11n
127
(K11n
127
)
A knot diagram
1
Linearized knot diagam
7 1 10 7 9 2 10 5 3 8 9
Solving Sequence
1,7
2
3,10
4 8 6 9 5 11
c
1
c
2
c
3
c
7
c
6
c
9
c
5
c
11
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
15
+ 6u
14
+ ··· + 2b 11u, u
15
+ 3u
14
+ ··· + 2a + 11, u
16
4u
15
+ ··· 14u + 4i
I
u
2
= hu
8
+ 2u
7
+ 4u
6
+ 5u
5
+ 6u
4
+ 6u
3
+ 3u
2
+ b + 2u + 1, u
7
+ u
6
+ 2u
5
+ u
4
+ 2u
3
+ 2u
2
+ a,
u
9
+ u
8
+ 3u
7
+ 2u
6
+ 4u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ 1i
I
u
3
= h2u
3
ba 2u
4
a + u
2
ba 2u
3
a + 2bau 2u
2
a + b
2
+ 2ba au + u
2
+ 2u + 1,
u
4
a + u
3
a u
4
+ 2u
2
a + a
2
+ au u
2
+ a + u, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
15
+6u
14
+· · ·+2b11u, u
15
+3u
14
+· · ·+2a+11, u
16
4u
15
+· · ·14u+4i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
10
=
1
2
u
15
3
2
u
14
+ ··· + 13u
11
2
1
2
u
15
3u
14
+ ···
23
2
u
2
+
11
2
u
a
4
=
3
4
u
15
5
2
u
14
+ ··· +
27
4
u 2
1
2
u
15
+ 2u
14
+ ···
7
2
u + 1
a
8
=
1
4
u
15
+
1
2
u
14
+ ···
27
4
u + 3
1
2
u
15
+ u
14
+ ··· +
1
2
u 1
a
6
=
u
u
3
+ u
a
9
=
3
2
u
14
+ 5u
13
+ ··· +
33
2
u
15
2
3
2
u
15
5u
14
+ ···
33
2
u
2
+
15
2
u
a
5
=
3
4
u
15
5
2
u
14
+ ··· +
27
4
u 2
1
2
u
15
+ 2u
14
+ ···
15
2
u + 3
a
11
=
1
4
u
15
+
1
2
u
14
+ ···
23
4
u + 4
3
2
u
15
+ 4u
14
+ ···
13
2
u + 1
a
11
=
1
4
u
15
+
1
2
u
14
+ ···
23
4
u + 4
3
2
u
15
+ 4u
14
+ ···
13
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
15
+ 2u
14
4u
13
+ 18u
12
23u
11
+ 36u
10
42u
9
+ 49u
8
57u
7
+ 38u
6
17u
5
+ 6u
4
4u
3
+ 23u
2
14u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
16
+ 4u
15
+ ··· + 14u + 4
c
2
u
16
+ 8u
15
+ ··· 12u + 16
c
3
, c
5
, c
8
c
9
u
16
u
15
+ ··· u + 1
c
4
u
16
+ u
15
+ ··· u + 1
c
7
, c
10
u
16
9u
15
+ ··· 128u + 32
c
11
u
16
+ 3u
15
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
16
+ 8y
15
+ ··· 12y + 16
c
2
y
16
+ 20y
14
+ ··· + 784y + 256
c
3
, c
5
, c
8
c
9
y
16
+ y
15
+ ··· 5y + 1
c
4
y
16
+ 29y
15
+ ··· + 31y + 1
c
7
, c
10
y
16
13y
15
+ ··· 512y + 1024
c
11
y
16
+ 17y
15
+ ··· 21y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.942369 + 0.202951I
a = 1.72389 0.04762I
b = 0.379524 + 0.857765I
6.09218 7.65352I 5.03016 + 4.26371I
u = 0.942369 0.202951I
a = 1.72389 + 0.04762I
b = 0.379524 0.857765I
6.09218 + 7.65352I 5.03016 4.26371I
u = 0.278245 + 1.091110I
a = 0.701786 0.590992I
b = 0.528417 0.110176I
3.59071 + 0.23489I 0.00495 + 2.03163I
u = 0.278245 1.091110I
a = 0.701786 + 0.590992I
b = 0.528417 + 0.110176I
3.59071 0.23489I 0.00495 2.03163I
u = 0.666650 + 0.457955I
a = 0.813008 0.264852I
b = 0.209000 + 0.442237I
1.227240 0.533814I 8.87917 + 3.72662I
u = 0.666650 0.457955I
a = 0.813008 + 0.264852I
b = 0.209000 0.442237I
1.227240 + 0.533814I 8.87917 3.72662I
u = 0.709198 + 0.345008I
a = 0.992942 + 0.950055I
b = 0.076805 1.100350I
0.53868 2.34706I 5.73269 + 5.07520I
u = 0.709198 0.345008I
a = 0.992942 0.950055I
b = 0.076805 + 1.100350I
0.53868 + 2.34706I 5.73269 5.07520I
u = 0.555419 + 1.111790I
a = 0.674901 0.885563I
b = 0.72750 + 1.84198I
1.69676 + 7.19836I 2.21492 9.55770I
u = 0.555419 1.111790I
a = 0.674901 + 0.885563I
b = 0.72750 1.84198I
1.69676 7.19836I 2.21492 + 9.55770I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.706391 + 1.042180I
a = 0.131675 + 0.901270I
b = 0.95468 1.04353I
0.51238 4.79975I 9.59566 + 5.34793I
u = 0.706391 1.042180I
a = 0.131675 0.901270I
b = 0.95468 + 1.04353I
0.51238 + 4.79975I 9.59566 5.34793I
u = 0.572643 + 1.229640I
a = 0.261905 + 1.244920I
b = 1.82806 2.11251I
9.2176 + 13.1290I 2.40989 7.11896I
u = 0.572643 1.229640I
a = 0.261905 1.244920I
b = 1.82806 + 2.11251I
9.2176 13.1290I 2.40989 + 7.11896I
u = 0.315167 + 1.323970I
a = 0.478712 + 1.077590I
b = 0.217216 1.305260I
11.08760 3.34610I 0.13256 + 2.28731I
u = 0.315167 1.323970I
a = 0.478712 1.077590I
b = 0.217216 + 1.305260I
11.08760 + 3.34610I 0.13256 2.28731I
6
II. I
u
2
=
hu
8
+2u
7
+· · ·+b+1, u
7
+u
6
+2u
5
+u
4
+2u
3
+2u
2
+a, u
9
+u
8
+· · ·+2u
2
+1i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
10
=
u
7
u
6
2u
5
u
4
2u
3
2u
2
u
8
2u
7
4u
6
5u
5
6u
4
6u
3
3u
2
2u 1
a
4
=
u
6
+ u
5
+ 2u
4
+ u
3
+ 2u
2
+ u
u
8
+ 2u
7
+ 3u
6
+ 3u
5
+ 3u
4
+ 4u
3
+ 2u
2
+ u
a
8
=
2u
8
+ u
7
+ 4u
6
+ u
5
+ 4u
4
+ 2u
3
u
2
+ 2u 1
u
8
u
7
u
6
u
3
+ u
2
+ u 1
a
6
=
u
u
3
+ u
a
9
=
u
8
+ u
6
u
5
u
3
3u
2
1
u
8
2u
7
3u
6
4u
5
4u
4
5u
3
2u
2
u 1
a
5
=
u
6
+ u
5
+ 2u
4
+ u
3
+ 2u
2
+ u
u
7
+ u
6
+ 2u
5
+ u
4
+ 3u
3
+ 2u
2
+ u
a
11
=
2u
8
u
7
4u
6
2u
5
5u
4
4u
3
3u
u
8
+ 2u
7
+ 2u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ u
2
u + 2
a
11
=
2u
8
u
7
4u
6
2u
5
5u
4
4u
3
3u
u
8
+ 2u
7
+ 2u
6
+ 3u
5
+ 2u
4
+ 4u
3
+ u
2
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
8
9u
7
17u
6
14u
5
13u
4
19u
3
+ 3u
2
4u + 7
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ u
8
+ 3u
7
+ 2u
6
+ 4u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ 1
c
2
u
9
+ 5u
8
+ 13u
7
+ 18u
6
+ 12u
5
3u
4
12u
3
10u
2
4u 1
c
3
, c
8
u
9
+ u
8
3u
7
3u
6
+ u
5
+ 2u
4
+ 3u
3
+ u
2
u 1
c
4
u
9
u
8
u
7
+ 3u
6
2u
5
+ u
4
+ 3u
3
3u
2
u + 1
c
5
, c
9
u
9
u
8
3u
7
+ 3u
6
+ u
5
2u
4
+ 3u
3
u
2
u + 1
c
6
u
9
u
8
+ 3u
7
2u
6
+ 4u
5
3u
4
+ 2u
3
2u
2
1
c
7
u
9
2u
8
3u
7
+ 6u
6
+ 4u
5
7u
4
2u
3
+ 4u
2
+ u 1
c
10
u
9
+ 2u
8
3u
7
6u
6
+ 4u
5
+ 7u
4
2u
3
4u
2
+ u + 1
c
11
u
9
+ u
8
3u
7
+ u
6
+ 5u
5
8u
4
+ 7u
3
5u
2
+ 3u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
9
+ 5y
8
+ 13y
7
+ 18y
6
+ 12y
5
3y
4
12y
3
10y
2
4y 1
c
2
y
9
+ y
8
+ 13y
7
6y
6
+ 32y
5
31y
4
+ 24y
3
10y
2
4y 1
c
3
, c
5
, c
8
c
9
y
9
7y
8
+ 17y
7
13y
6
9y
5
+ 16y
4
3y
3
3y
2
+ 3y 1
c
4
y
9
3y
8
+ 3y
7
+ 3y
6
16y
5
+ 9y
4
+ 13y
3
17y
2
+ 7y 1
c
7
, c
10
y
9
10y
8
+ 41y
7
92y
6
+ 130y
5
123y
4
+ 80y
3
34y
2
+ 9y 1
c
11
y
9
7y
8
+ 17y
7
y
6
+ 15y
5
+ y
3
+ y
2
y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.277669 + 0.932262I
a = 0.66814 + 1.66313I
b = 1.61486 0.17253I
5.14657 1.15296I 4.87761 + 0.08024I
u = 0.277669 0.932262I
a = 0.66814 1.66313I
b = 1.61486 + 0.17253I
5.14657 + 1.15296I 4.87761 0.08024I
u = 0.938745
a = 0.531564
b = 0.127243
2.27396 18.5500
u = 0.467120 + 1.031000I
a = 0.163102 1.011920I
b = 1.29297 + 2.17581I
2.64932 + 3.16170I 4.24677 4.92069I
u = 0.467120 1.031000I
a = 0.163102 + 1.011920I
b = 1.29297 2.17581I
2.64932 3.16170I 4.24677 + 4.92069I
u = 0.379126 + 0.580278I
a = 0.955194 0.520788I
b = 0.99687 1.01843I
4.15634 + 0.57166I 10.33448 + 2.09908I
u = 0.379126 0.580278I
a = 0.955194 + 0.520788I
b = 0.99687 + 1.01843I
4.15634 0.57166I 10.33448 2.09908I
u = 0.599205 + 1.212400I
a = 0.052214 + 0.684269I
b = 0.652657 1.185850I
1.15114 5.45727I 5.02115 + 10.16231I
u = 0.599205 1.212400I
a = 0.052214 0.684269I
b = 0.652657 + 1.185850I
1.15114 + 5.45727I 5.02115 10.16231I
10
III. I
u
3
= h2u
3
ba 2u
4
a + · · · + 2ba + 1, u
4
a + u
3
a u
4
+ 2u
2
a + a
2
+ au
u
2
+ a + u, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
10
=
a
b
a
4
=
u
2
ba ba au + u
2
u
4
ba u
3
a + u
4
+ 2u
3
+ au + u
2
+ 2u + 1
a
8
=
u
4
+ u
3
+ 2u
2
a + u + 1
bau + u
a
6
=
u
u
3
+ u
a
9
=
u
4
b u
4
a 2u
2
b u
2
a b + a
u
4
b + u
4
a + u
2
b + b
a
5
=
u
2
ba ba au + u
2
u
2
ba + 2u
3
+ au + u
2
+ 2u + 1
a
11
=
u
4
+ u
3
+ 2u
2
a + u + 1
bau + u
2
a
a
11
=
u
4
+ u
3
+ 2u
2
a + u + 1
bau + u
2
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
4u + 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
5
u
4
+ 2u
3
u
2
+ u 1)
4
c
2
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
4
c
3
, c
5
, c
8
c
9
u
20
u
19
+ ··· 10u 1
c
4
u
20
+ u
19
+ ··· + 148u + 131
c
7
, c
10
(u
2
+ u 1)
10
c
11
u
20
+ 5u
19
+ ··· 140u 71
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
4
c
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
4
c
3
, c
5
, c
8
c
9
y
20
5y
19
+ ··· 44y + 1
c
4
y
20
+ 15y
19
+ ··· 33432y + 17161
c
7
, c
10
(y
2
3y + 1)
10
c
11
y
20
y
19
+ ··· 17044y + 5041
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.264858 + 0.642307I
b = 0.66048 + 1.35031I
3.61874 + 1.53058I 5.48489 4.43065I
u = 0.339110 + 0.822375I
a = 0.264858 + 0.642307I
b = 1.94204 1.43725I
3.61874 + 1.53058I 5.48489 4.43065I
u = 0.339110 + 0.822375I
a = 0.69341 1.68158I
b = 0.784885 + 0.673984I
4.27694 + 1.53058I 5.48489 4.43065I
u = 0.339110 + 0.822375I
a = 0.69341 1.68158I
b = 2.57027 0.44637I
4.27694 + 1.53058I 5.48489 4.43065I
u = 0.339110 0.822375I
a = 0.264858 0.642307I
b = 0.66048 1.35031I
3.61874 1.53058I 5.48489 + 4.43065I
u = 0.339110 0.822375I
a = 0.264858 0.642307I
b = 1.94204 + 1.43725I
3.61874 1.53058I 5.48489 + 4.43065I
u = 0.339110 0.822375I
a = 0.69341 + 1.68158I
b = 0.784885 0.673984I
4.27694 1.53058I 5.48489 + 4.43065I
u = 0.339110 0.822375I
a = 0.69341 + 1.68158I
b = 2.57027 + 0.44637I
4.27694 1.53058I 5.48489 + 4.43065I
u = 0.766826
a = 0.805964
b = 0.392752
1.54676 4.51890
u = 0.766826
a = 0.805964
b = 0.269802
1.54676 4.51890
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.766826
a = 2.11004
b = 0.160943 + 0.669501I
6.34892 4.51890
u = 0.766826
a = 2.11004
b = 0.160943 0.669501I
6.34892 4.51890
u = 0.455697 + 1.200150I
a = 0.447404 1.178310I
b = 0.21064 + 1.68233I
9.82040 4.40083I 1.25569 + 3.49859I
u = 0.455697 + 1.200150I
a = 0.447404 1.178310I
b = 2.17455 + 2.27205I
9.82040 4.40083I 1.25569 + 3.49859I
u = 0.455697 + 1.200150I
a = 0.170893 + 0.450075I
b = 0.90313 1.27207I
1.92472 4.40083I 1.25569 + 3.49859I
u = 0.455697 + 1.200150I
a = 0.170893 + 0.450075I
b = 0.007932 0.238370I
1.92472 4.40083I 1.25569 + 3.49859I
u = 0.455697 1.200150I
a = 0.447404 + 1.178310I
b = 0.21064 1.68233I
9.82040 + 4.40083I 1.25569 3.49859I
u = 0.455697 1.200150I
a = 0.447404 + 1.178310I
b = 2.17455 2.27205I
9.82040 + 4.40083I 1.25569 3.49859I
u = 0.455697 1.200150I
a = 0.170893 0.450075I
b = 0.90313 + 1.27207I
1.92472 + 4.40083I 1.25569 3.49859I
u = 0.455697 1.200150I
a = 0.170893 0.450075I
b = 0.007932 + 0.238370I
1.92472 + 4.40083I 1.25569 3.49859I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
u
4
+ 2u
3
u
2
+ u 1)
4
· (u
9
+ u
8
+ 3u
7
+ 2u
6
+ 4u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ 1)
· (u
16
+ 4u
15
+ ··· + 14u + 4)
c
2
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
4
· (u
9
+ 5u
8
+ 13u
7
+ 18u
6
+ 12u
5
3u
4
12u
3
10u
2
4u 1)
· (u
16
+ 8u
15
+ ··· 12u + 16)
c
3
, c
8
(u
9
+ u
8
3u
7
3u
6
+ u
5
+ 2u
4
+ 3u
3
+ u
2
u 1)
· (u
16
u
15
+ ··· u + 1)(u
20
u
19
+ ··· 10u 1)
c
4
(u
9
u
8
u
7
+ 3u
6
2u
5
+ u
4
+ 3u
3
3u
2
u + 1)
· (u
16
+ u
15
+ ··· u + 1)(u
20
+ u
19
+ ··· + 148u + 131)
c
5
, c
9
(u
9
u
8
3u
7
+ 3u
6
+ u
5
2u
4
+ 3u
3
u
2
u + 1)
· (u
16
u
15
+ ··· u + 1)(u
20
u
19
+ ··· 10u 1)
c
6
(u
5
u
4
+ 2u
3
u
2
+ u 1)
4
· (u
9
u
8
+ 3u
7
2u
6
+ 4u
5
3u
4
+ 2u
3
2u
2
1)
· (u
16
+ 4u
15
+ ··· + 14u + 4)
c
7
(u
2
+ u 1)
10
(u
9
2u
8
3u
7
+ 6u
6
+ 4u
5
7u
4
2u
3
+ 4u
2
+ u 1)
· (u
16
9u
15
+ ··· 128u + 32)
c
10
(u
2
+ u 1)
10
(u
9
+ 2u
8
3u
7
6u
6
+ 4u
5
+ 7u
4
2u
3
4u
2
+ u + 1)
· (u
16
9u
15
+ ··· 128u + 32)
c
11
(u
9
+ u
8
3u
7
+ u
6
+ 5u
5
8u
4
+ 7u
3
5u
2
+ 3u 1)
· (u
16
+ 3u
15
+ ··· u + 1)(u
20
+ 5u
19
+ ··· 140u 71)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
4
· (y
9
+ 5y
8
+ 13y
7
+ 18y
6
+ 12y
5
3y
4
12y
3
10y
2
4y 1)
· (y
16
+ 8y
15
+ ··· 12y + 16)
c
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
4
· (y
9
+ y
8
+ 13y
7
6y
6
+ 32y
5
31y
4
+ 24y
3
10y
2
4y 1)
· (y
16
+ 20y
14
+ ··· + 784y + 256)
c
3
, c
5
, c
8
c
9
(y
9
7y
8
+ 17y
7
13y
6
9y
5
+ 16y
4
3y
3
3y
2
+ 3y 1)
· (y
16
+ y
15
+ ··· 5y + 1)(y
20
5y
19
+ ··· 44y + 1)
c
4
(y
9
3y
8
+ 3y
7
+ 3y
6
16y
5
+ 9y
4
+ 13y
3
17y
2
+ 7y 1)
· (y
16
+ 29y
15
+ ··· + 31y + 1)(y
20
+ 15y
19
+ ··· 33432y + 17161)
c
7
, c
10
(y
2
3y + 1)
10
· (y
9
10y
8
+ 41y
7
92y
6
+ 130y
5
123y
4
+ 80y
3
34y
2
+ 9y 1)
· (y
16
13y
15
+ ··· 512y + 1024)
c
11
(y
9
7y
8
+ 17y
7
y
6
+ 15y
5
+ y
3
+ y
2
y 1)
· (y
16
+ 17y
15
+ ··· 21y + 1)(y
20
y
19
+ ··· 17044y + 5041)
17