11n
130
(K11n
130
)
A knot diagram
1
Linearized knot diagam
7 1 10 8 9 2 11 1 7 4 5
Solving Sequence
5,11 1,8
9 4 7 2 3 6 10
c
11
c
8
c
4
c
7
c
1
c
2
c
6
c
10
c
3
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.64498 × 10
39
u
36
5.83142 × 10
39
u
35
+ ··· + 9.36297 × 10
38
b 1.79289 × 10
40
,
8.32208 × 10
40
u
36
+ 2.24302 × 10
41
u
35
+ ··· + 1.02993 × 10
40
a + 1.49267 × 10
42
, u
37
+ 2u
36
+ ··· 8u 11i
I
u
2
= h5u
10
+ 19u
9
+ 8u
8
+ 9u
7
+ 20u
6
+ 86u
5
+ 142u
4
+ 71u
3
71u
2
+ 67b + 39u + 64,
5u
10
48u
9
+ 8u
8
+ 76u
7
47u
6
249u
5
+ 75u
4
+ 138u
3
4u
2
+ 67a 95u + 131,
u
11
+ u
10
u
9
+ 7u
7
+ 6u
6
u
5
u
4
+ 5u
3
+ 2u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.64 × 10
39
u
36
5.83 × 10
39
u
35
+ · · · + 9.36 × 10
38
b 1.79 ×
10
40
, 8.32 × 10
40
u
36
+ 2.24 × 10
41
u
35
+ · · · + 1.03 × 10
40
a + 1.49 ×
10
42
, u
37
+ 2u
36
+ · · · 8u 11i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
8
=
8.08027u
36
21.7785u
35
+ ··· 344.393u 144.929
2.82494u
36
+ 6.22818u
35
+ ··· + 78.1053u + 19.1487
a
9
=
1.86142u
36
6.80771u
35
+ ··· 132.462u 63.9835
5.72773u
36
+ 12.8467u
35
+ ··· + 166.777u + 47.0123
a
4
=
14.5710u
36
35.2438u
35
+ ··· 475.357u 170.402
4.84473u
36
12.7993u
35
+ ··· 193.507u 68.6348
a
7
=
5.25533u
36
15.5503u
35
+ ··· 266.288u 125.781
2.82494u
36
+ 6.22818u
35
+ ··· + 78.1053u + 19.1487
a
2
=
7.55117u
36
+ 20.4537u
35
+ ··· + 318.954u + 177.930
4.57906u
36
+ 12.5897u
35
+ ··· + 193.139u + 107.947
a
3
=
7.22065u
36
+ 17.5684u
35
+ ··· + 251.689u + 128.847
4.47610u
36
+ 11.7558u
35
+ ··· + 171.709u + 83.4806
a
6
=
9.28201u
36
21.1993u
35
+ ··· 266.287u 108.443
0.126287u
36
+ 2.51101u
35
+ ··· + 72.2964u + 34.4863
a
10
=
2.42894u
36
+ 8.72585u
35
+ ··· + 164.941u + 113.830
2.47797u
36
+ 5.69993u
35
+ ··· + 64.9436u + 35.7552
a
10
=
2.42894u
36
+ 8.72585u
35
+ ··· + 164.941u + 113.830
2.47797u
36
+ 5.69993u
35
+ ··· + 64.9436u + 35.7552
(ii) Obstruction class = 1
(iii) Cusp Shapes = 28.2238u
36
73.9995u
35
+ ··· 1024.01u 467.975
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
37
+ 24u
35
+ ··· 4u + 1
c
2
u
37
+ 48u
36
+ ··· + 8u 1
c
3
, c
10
u
37
u
36
+ ··· + 6u + 1
c
4
u
37
3u
36
+ ··· + 12u + 1
c
5
u
37
u
36
+ ··· + 1746u + 367
c
7
u
37
+ 4u
36
+ ··· 8u + 1
c
8
u
37
+ 10u
35
+ ··· 75u + 23
c
9
u
37
+ 6u
36
+ ··· 6703u + 583
c
11
u
37
+ 2u
36
+ ··· 8u 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
37
+ 48y
36
+ ··· + 8y 1
c
2
y
37
112y
36
+ ··· 100y 1
c
3
, c
10
y
37
17y
36
+ ··· + 22y 1
c
4
y
37
3y
36
+ ··· + 24y 1
c
5
y
37
53y
36
+ ··· + 2094316y 134689
c
7
y
37
+ 2y
36
+ ··· 56y
2
1
c
8
y
37
+ 20y
36
+ ··· 44975y 529
c
9
y
37
66y
36
+ ··· + 4068905y 339889
c
11
y
37
10y
36
+ ··· + 2308y 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.601373 + 0.797904I
a = 0.100319 0.818260I
b = 0.125544 + 0.666416I
0.33153 + 1.56965I 1.84729 2.87829I
u = 0.601373 0.797904I
a = 0.100319 + 0.818260I
b = 0.125544 0.666416I
0.33153 1.56965I 1.84729 + 2.87829I
u = 0.756589 + 0.697163I
a = 0.048994 0.966661I
b = 0.592884 + 1.189630I
0.52746 + 2.09006I 0.36189 3.60216I
u = 0.756589 0.697163I
a = 0.048994 + 0.966661I
b = 0.592884 1.189630I
0.52746 2.09006I 0.36189 + 3.60216I
u = 0.746755 + 0.717340I
a = 0.24852 1.52698I
b = 0.832075 + 0.932954I
3.60755 4.86664I 5.83345 + 5.56346I
u = 0.746755 0.717340I
a = 0.24852 + 1.52698I
b = 0.832075 0.932954I
3.60755 + 4.86664I 5.83345 5.56346I
u = 0.850079 + 0.415638I
a = 0.200244 + 0.592775I
b = 1.43302 1.13498I
9.44422 + 4.54412I 2.91144 6.06217I
u = 0.850079 0.415638I
a = 0.200244 0.592775I
b = 1.43302 + 1.13498I
9.44422 4.54412I 2.91144 + 6.06217I
u = 0.833991 + 0.353566I
a = 0.238282 + 1.378690I
b = 0.48049 1.49168I
9.78588 + 0.61235I 3.21523 + 0.70893I
u = 0.833991 0.353566I
a = 0.238282 1.378690I
b = 0.48049 + 1.49168I
9.78588 0.61235I 3.21523 0.70893I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.820454 + 0.302238I
a = 0.649750 0.760838I
b = 0.367432 0.280099I
0.44492 + 2.47536I 1.10953 5.85952I
u = 0.820454 0.302238I
a = 0.649750 + 0.760838I
b = 0.367432 + 0.280099I
0.44492 2.47536I 1.10953 + 5.85952I
u = 0.709146 + 0.450731I
a = 2.09178 0.67084I
b = 1.020550 + 0.314178I
8.92085 1.02999I 3.37249 2.08147I
u = 0.709146 0.450731I
a = 2.09178 + 0.67084I
b = 1.020550 0.314178I
8.92085 + 1.02999I 3.37249 + 2.08147I
u = 0.698049 + 0.369328I
a = 2.57924 + 1.16241I
b = 0.291961 + 0.320467I
9.27666 3.59094I 4.07946 + 9.46699I
u = 0.698049 0.369328I
a = 2.57924 1.16241I
b = 0.291961 0.320467I
9.27666 + 3.59094I 4.07946 9.46699I
u = 0.518070 + 1.102540I
a = 0.461824 0.300576I
b = 0.066504 + 0.656363I
1.17632 + 1.49794I 4.03696 6.33192I
u = 0.518070 1.102540I
a = 0.461824 + 0.300576I
b = 0.066504 0.656363I
1.17632 1.49794I 4.03696 + 6.33192I
u = 1.223990 + 0.280649I
a = 0.445468 + 0.076745I
b = 0.380103 0.218592I
2.40459 + 0.03773I 9.51019 + 3.78756I
u = 1.223990 0.280649I
a = 0.445468 0.076745I
b = 0.380103 + 0.218592I
2.40459 0.03773I 9.51019 3.78756I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.658844
a = 1.02220
b = 1.22072
2.54226 10.2460
u = 0.599605 + 0.263744I
a = 0.44406 + 1.78040I
b = 0.98175 1.24775I
1.39846 + 3.05009I 3.20830 2.79125I
u = 0.599605 0.263744I
a = 0.44406 1.78040I
b = 0.98175 + 1.24775I
1.39846 3.05009I 3.20830 + 2.79125I
u = 0.649301 + 0.015184I
a = 0.789959 + 0.549138I
b = 1.202670 0.218143I
2.53052 0.01603I 8.01901 0.30181I
u = 0.649301 0.015184I
a = 0.789959 0.549138I
b = 1.202670 + 0.218143I
2.53052 + 0.01603I 8.01901 + 0.30181I
u = 1.070020 + 0.832774I
a = 0.089943 + 0.968954I
b = 1.00403 1.22232I
0.20513 8.27502I 0. + 7.41109I
u = 1.070020 0.832774I
a = 0.089943 0.968954I
b = 1.00403 + 1.22232I
0.20513 + 8.27502I 0. 7.41109I
u = 1.026120 + 0.886327I
a = 0.287552 + 1.044070I
b = 0.813618 0.738930I
0.93685 + 5.16140I 0. 5.99788I
u = 1.026120 0.886327I
a = 0.287552 1.044070I
b = 0.813618 + 0.738930I
0.93685 5.16140I 0. + 5.99788I
u = 1.23107 + 0.72507I
a = 0.147341 + 0.177104I
b = 0.605243 0.552824I
0.70258 + 2.95006I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.23107 0.72507I
a = 0.147341 0.177104I
b = 0.605243 + 0.552824I
0.70258 2.95006I 0
u = 1.24432 + 0.89792I
a = 0.179117 1.081050I
b = 1.10074 + 1.15043I
9.0036 + 13.3479I 0
u = 1.24432 0.89792I
a = 0.179117 + 1.081050I
b = 1.10074 1.15043I
9.0036 13.3479I 0
u = 0.64511 + 1.54806I
a = 0.463658 + 0.370863I
b = 0.511435 0.791669I
6.92057 5.26122I 0
u = 0.64511 1.54806I
a = 0.463658 0.370863I
b = 0.511435 + 0.791669I
6.92057 + 5.26122I 0
u = 1.41428 + 1.03844I
a = 0.080599 0.633894I
b = 0.915060 + 0.595859I
12.51050 5.12964I 0
u = 1.41428 1.03844I
a = 0.080599 + 0.633894I
b = 0.915060 0.595859I
12.51050 + 5.12964I 0
8
II. I
u
2
=
h5u
10
+19u
9
+· · ·+67b+64, 5u
10
48u
9
+· · ·+67a+131, u
11
+u
10
+· · ·u1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
8
=
0.0746269u
10
+ 0.716418u
9
+ ··· + 1.41791u 1.95522
0.0746269u
10
0.283582u
9
+ ··· 0.582090u 0.955224
a
9
=
0.835821u
10
+ 0.776119u
9
+ ··· + 0.119403u 3.70149
0.343284u
10
+ 0.104478u
9
+ ··· 0.522388u 1.80597
a
4
=
1.47761u
10
+ 0.0149254u
9
+ ··· 4.07463u 0.686567
0.850746u
10
0.432836u
9
+ ··· 0.835821u + 0.910448
a
7
=
0.149254u
10
+ 0.432836u
9
+ ··· + 0.835821u 2.91045
0.0746269u
10
0.283582u
9
+ ··· 0.582090u 0.955224
a
2
=
2.74627u
10
+ 0.835821u
9
+ ··· 4.17910u 2.44776
0.791045u
10
0.194030u
9
+ ··· 2.02985u 0.0746269
a
3
=
2.80597u
10
+ 1.46269u
9
+ ··· 1.31343u 4.28358
0.179104u
10
0.119403u
9
+ ··· 1.40299u + 0.492537
a
6
=
1.37313u
10
2.41791u
9
+ ··· 6.91045u + 4.22388
0.820896u
10
1.11940u
9
+ ··· 2.40299u + 1.49254
a
10
=
0.611940u
10
0.0746269u
9
+ ··· 3.62687u + 2.43284
0.567164u
10
+ 0.0447761u
9
+ ··· + 0.776119u + 0.940299
a
10
=
0.611940u
10
0.0746269u
9
+ ··· 3.62687u + 2.43284
0.567164u
10
+ 0.0447761u
9
+ ··· + 0.776119u + 0.940299
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
76
67
u
10
+
61
67
u
9
+
68
67
u
8
24
67
u
7
+
371
67
u
6
+
731
67
u
5
+
470
67
u
4
167
67
u
3
+
569
67
u
2
+
700
67
u +
209
67
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
+ u
10
+ ··· + 3u + 1
c
2
u
11
+ 11u
10
+ ··· 3u 1
c
3
u
11
5u
9
2u
8
+ 11u
7
+ 9u
6
12u
5
15u
4
+ 5u
3
+ 11u
2
+ u 3
c
4
u
11
2u
9
3u
8
+ 7u
7
+ 6u
6
3u
5
12u
4
+ 3u
3
+ 6u
2
u 1
c
5
u
11
3u
9
+ 3u
8
u
7
5u
6
+ 12u
5
15u
4
+ 13u
3
8u
2
+ 3u 1
c
6
u
11
u
10
+ ··· + 3u 1
c
7
u
11
+ u
10
+ u
9
3u
8
u
7
3u
6
+ 2u
5
5u
4
2u
2
+ u 1
c
8
u
11
u
10
+ 2u
9
+ 3u
8
4u
7
+ 4u
6
+ 5u
5
8u
4
+ u
3
+ 5u
2
4u 3
c
9
u
11
+ 7u
10
+ ··· + 8u + 1
c
10
u
11
5u
9
+ 2u
8
+ 11u
7
9u
6
12u
5
+ 15u
4
+ 5u
3
11u
2
+ u + 3
c
11
u
11
+ u
10
u
9
+ 7u
7
+ 6u
6
u
5
u
4
+ 5u
3
+ 2u
2
u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
11
+ 11y
10
+ ··· 3y 1
c
2
y
11
17y
10
+ ··· + y 1
c
3
, c
10
y
11
10y
10
+ ··· + 67y 9
c
4
y
11
4y
10
+ ··· + 13y 1
c
5
y
11
6y
10
+ ··· 7y 1
c
7
y
11
+ y
10
+ ··· 3y 1
c
8
y
11
+ 3y
10
+ ··· + 46y 9
c
9
y
11
7y
10
+ ··· + 2y 1
c
11
y
11
3y
10
+ ··· + 5y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.575448 + 0.685098I
a = 0.28148 1.48144I
b = 0.594339 + 1.201490I
2.53579 3.27380I 4.40962 + 3.96450I
u = 0.575448 0.685098I
a = 0.28148 + 1.48144I
b = 0.594339 1.201490I
2.53579 + 3.27380I 4.40962 3.96450I
u = 0.931149 + 0.725260I
a = 0.483405 + 1.197060I
b = 1.05505 1.01633I
2.26337 + 5.93413I 0.97958 6.14906I
u = 0.931149 0.725260I
a = 0.483405 1.197060I
b = 1.05505 + 1.01633I
2.26337 5.93413I 0.97958 + 6.14906I
u = 1.132080 + 0.689250I
a = 0.322254 0.191452I
b = 0.468519 + 0.646535I
2.10419 0.48851I 1.91182 + 5.66309I
u = 1.132080 0.689250I
a = 0.322254 + 0.191452I
b = 0.468519 0.646535I
2.10419 + 0.48851I 1.91182 5.66309I
u = 0.470761 + 0.380594I
a = 2.42373 + 0.15412I
b = 0.537257 0.676495I
9.12876 + 2.79567I 1.55052 + 0.06651I
u = 0.470761 0.380594I
a = 2.42373 0.15412I
b = 0.537257 + 0.676495I
9.12876 2.79567I 1.55052 0.06651I
u = 0.547799
a = 1.41244
b = 1.39693
2.17580 12.3110
u = 1.18464 + 1.06749I
a = 0.249721 + 0.403821I
b = 0.382185 0.494093I
0.02345 3.01225I 6.59416 + 5.79825I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.18464 1.06749I
a = 0.249721 0.403821I
b = 0.382185 + 0.494093I
0.02345 + 3.01225I 6.59416 5.79825I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
+ u
10
+ ··· + 3u + 1)(u
37
+ 24u
35
+ ··· 4u + 1)
c
2
(u
11
+ 11u
10
+ ··· 3u 1)(u
37
+ 48u
36
+ ··· + 8u 1)
c
3
(u
11
5u
9
2u
8
+ 11u
7
+ 9u
6
12u
5
15u
4
+ 5u
3
+ 11u
2
+ u 3)
· (u
37
u
36
+ ··· + 6u + 1)
c
4
(u
11
2u
9
3u
8
+ 7u
7
+ 6u
6
3u
5
12u
4
+ 3u
3
+ 6u
2
u 1)
· (u
37
3u
36
+ ··· + 12u + 1)
c
5
(u
11
3u
9
+ 3u
8
u
7
5u
6
+ 12u
5
15u
4
+ 13u
3
8u
2
+ 3u 1)
· (u
37
u
36
+ ··· + 1746u + 367)
c
6
(u
11
u
10
+ ··· + 3u 1)(u
37
+ 24u
35
+ ··· 4u + 1)
c
7
(u
11
+ u
10
+ u
9
3u
8
u
7
3u
6
+ 2u
5
5u
4
2u
2
+ u 1)
· (u
37
+ 4u
36
+ ··· 8u + 1)
c
8
(u
11
u
10
+ 2u
9
+ 3u
8
4u
7
+ 4u
6
+ 5u
5
8u
4
+ u
3
+ 5u
2
4u 3)
· (u
37
+ 10u
35
+ ··· 75u + 23)
c
9
(u
11
+ 7u
10
+ ··· + 8u + 1)(u
37
+ 6u
36
+ ··· 6703u + 583)
c
10
(u
11
5u
9
+ 2u
8
+ 11u
7
9u
6
12u
5
+ 15u
4
+ 5u
3
11u
2
+ u + 3)
· (u
37
u
36
+ ··· + 6u + 1)
c
11
(u
11
+ u
10
u
9
+ 7u
7
+ 6u
6
u
5
u
4
+ 5u
3
+ 2u
2
u 1)
· (u
37
+ 2u
36
+ ··· 8u 11)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
11
+ 11y
10
+ ··· 3y 1)(y
37
+ 48y
36
+ ··· + 8y 1)
c
2
(y
11
17y
10
+ ··· + y 1)(y
37
112y
36
+ ··· 100y 1)
c
3
, c
10
(y
11
10y
10
+ ··· + 67y 9)(y
37
17y
36
+ ··· + 22y 1)
c
4
(y
11
4y
10
+ ··· + 13y 1)(y
37
3y
36
+ ··· + 24y 1)
c
5
(y
11
6y
10
+ ··· 7y 1)(y
37
53y
36
+ ··· + 2094316y 134689)
c
7
(y
11
+ y
10
+ ··· 3y 1)(y
37
+ 2y
36
+ ··· 56y
2
1)
c
8
(y
11
+ 3y
10
+ ··· + 46y 9)(y
37
+ 20y
36
+ ··· 44975y 529)
c
9
(y
11
7y
10
+ ··· + 2y 1)(y
37
66y
36
+ ··· + 4068905y 339889)
c
11
(y
11
3y
10
+ ··· + 5y 1)(y
37
10y
36
+ ··· + 2308y 121)
15