11n
131
(K11n
131
)
A knot diagram
1
Linearized knot diagam
7 1 11 9 8 2 10 5 3 8 9
Solving Sequence
1,7
2
3,10
8 6 5 9 11 4
c
1
c
2
c
7
c
6
c
5
c
9
c
11
c
3
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−9.69653 × 10
36
u
43
+ 1.93812 × 10
38
u
42
+ ··· + 1.36546 × 10
39
b + 1.44554 × 10
39
,
2.34671 × 10
40
u
43
2.31254 × 10
39
u
42
+ ··· + 2.59437 × 10
40
a + 1.06428 × 10
41
, u
44
+ 8u
42
+ ··· + 28u + 19i
I
u
2
= h−u
10
2u
9
3u
8
5u
7
6u
6
10u
5
9u
4
8u
3
9u
2
+ b 4u 4,
u
9
u
8
2u
7
2u
6
3u
5
5u
4
2u
3
3u
2
+ a u 2,
u
11
+ u
10
+ 3u
9
+ 3u
8
+ 5u
7
+ 7u
6
+ 5u
5
+ 8u
4
+ 3u
3
+ 5u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 55 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9.70 × 10
36
u
43
+ 1.94 × 10
38
u
42
+ · · · + 1.37 × 10
39
b + 1.45 ×
10
39
, 2.35 × 10
40
u
43
2.31 × 10
39
u
42
+ · · · + 2.59 × 10
40
a + 1.06 ×
10
41
, u
44
+ 8u
42
+ · · · + 28u + 19i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
10
=
0.904540u
43
+ 0.0891368u
42
+ ··· 28.1734u 4.10227
0.00710130u
43
0.141939u
42
+ ··· 5.47040u 1.05865
a
8
=
0.129802u
43
0.616286u
42
+ ··· 13.9864u 18.1892
0.112721u
43
+ 0.238849u
42
+ ··· 2.68255u + 7.40994
a
6
=
u
u
3
+ u
a
5
=
0.855694u
43
+ 0.294688u
42
+ ··· + 42.8937u + 18.2259
0.198202u
43
0.0959296u
42
+ ··· 8.51213u 7.37608
a
9
=
1.12405u
43
0.0401899u
42
+ ··· 35.9422u 8.61657
0.406276u
43
+ 0.227899u
42
+ ··· 10.7610u + 3.51106
a
11
=
0.232879u
43
+ 0.618756u
42
+ ··· + 6.55564u + 18.5444
0.0121303u
43
+ 0.0705266u
42
+ ··· + 6.59355u + 5.72029
a
4
=
0.925125u
43
+ 0.652168u
42
+ ··· 16.2508u + 7.52727
0.107850u
43
+ 0.505554u
42
+ ··· + 18.8829u + 20.6647
a
4
=
0.925125u
43
+ 0.652168u
42
+ ··· 16.2508u + 7.52727
0.107850u
43
+ 0.505554u
42
+ ··· + 18.8829u + 20.6647
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.830501u
43
1.97049u
42
+ ··· 84.2334u 62.6447
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
44
+ 8u
42
+ ··· + 28u + 19
c
2
u
44
+ 16u
43
+ ··· + 3928u + 361
c
3
u
44
+ 4u
43
+ ··· + 13u + 1
c
4
, c
5
, c
8
u
44
+ 2u
43
+ ··· 11u 1
c
7
, c
10
u
44
+ u
43
+ ··· 41u + 11
c
9
u
44
u
43
+ ··· 14u 1
c
11
u
44
+ 2u
43
+ ··· + 12u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
44
+ 16y
43
+ ··· + 3928y + 361
c
2
y
44
+ 24y
43
+ ··· 363932y + 130321
c
3
y
44
42y
43
+ ··· 5y + 1
c
4
, c
5
, c
8
y
44
+ 12y
43
+ ··· 37y + 1
c
7
, c
10
y
44
15y
43
+ ··· 2869y + 121
c
9
y
44
+ 7y
43
+ ··· 54y + 1
c
11
y
44
38y
43
+ ··· 96y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.553611 + 0.824772I
a = 0.447859 + 1.150180I
b = 1.49583 0.39989I
3.21451 2.15595I 1.07743 + 2.96858I
u = 0.553611 0.824772I
a = 0.447859 1.150180I
b = 1.49583 + 0.39989I
3.21451 + 2.15595I 1.07743 2.96858I
u = 0.691309 + 0.811314I
a = 1.341520 + 0.125641I
b = 0.247744 + 0.790756I
4.27651 0.41832I 5.68762 0.89780I
u = 0.691309 0.811314I
a = 1.341520 0.125641I
b = 0.247744 0.790756I
4.27651 + 0.41832I 5.68762 + 0.89780I
u = 0.749080 + 0.765100I
a = 0.129349 1.222590I
b = 0.61597 + 1.72869I
5.60971 + 1.02097I 7.05881 + 0.21382I
u = 0.749080 0.765100I
a = 0.129349 + 1.222590I
b = 0.61597 1.72869I
5.60971 1.02097I 7.05881 0.21382I
u = 0.358331 + 0.841835I
a = 0.73681 + 1.63006I
b = 0.800323 0.656423I
4.31132 1.52913I 4.89215 + 5.65142I
u = 0.358331 0.841835I
a = 0.73681 1.63006I
b = 0.800323 + 0.656423I
4.31132 + 1.52913I 4.89215 5.65142I
u = 0.724746 + 0.501149I
a = 0.790041 + 0.280445I
b = 0.212674 0.438603I
1.31409 + 0.60593I 8.59743 3.14385I
u = 0.724746 0.501149I
a = 0.790041 0.280445I
b = 0.212674 + 0.438603I
1.31409 0.60593I 8.59743 + 3.14385I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.672004 + 0.909211I
a = 0.118766 + 1.200990I
b = 0.67880 1.94511I
3.96994 + 5.67612I 4.70172 5.28440I
u = 0.672004 0.909211I
a = 0.118766 1.200990I
b = 0.67880 + 1.94511I
3.96994 5.67612I 4.70172 + 5.28440I
u = 0.305333 + 1.097040I
a = 0.502841 + 0.752892I
b = 0.431064 0.191810I
3.64801 0.66413I 0.67434 1.82360I
u = 0.305333 1.097040I
a = 0.502841 0.752892I
b = 0.431064 + 0.191810I
3.64801 + 0.66413I 0.67434 + 1.82360I
u = 0.724813 + 0.904533I
a = 0.048082 0.448492I
b = 1.168590 0.034882I
4.81373 2.81453I 7.83387 + 2.63389I
u = 0.724813 0.904533I
a = 0.048082 + 0.448492I
b = 1.168590 + 0.034882I
4.81373 + 2.81453I 7.83387 2.63389I
u = 0.155660 + 0.819694I
a = 0.50119 1.50907I
b = 0.837138 + 0.913868I
8.09531 0.68903I 3.33839 2.14717I
u = 0.155660 0.819694I
a = 0.50119 + 1.50907I
b = 0.837138 0.913868I
8.09531 + 0.68903I 3.33839 + 2.14717I
u = 1.035790 + 0.563745I
a = 1.135220 + 0.231350I
b = 0.457170 1.082790I
4.92535 + 7.92322I 5.81282 4.97707I
u = 1.035790 0.563745I
a = 1.135220 0.231350I
b = 0.457170 + 1.082790I
4.92535 7.92322I 5.81282 + 4.97707I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.702097 + 0.948685I
a = 1.230740 + 0.211924I
b = 0.165846 1.175810I
5.04402 6.54331I 5.65027 + 5.81604I
u = 0.702097 0.948685I
a = 1.230740 0.211924I
b = 0.165846 + 1.175810I
5.04402 + 6.54331I 5.65027 5.81604I
u = 0.191318 + 0.786546I
a = 0.321704 + 0.371146I
b = 2.20155 0.83164I
1.02150 1.91904I 0.873774 0.783296I
u = 0.191318 0.786546I
a = 0.321704 0.371146I
b = 2.20155 + 0.83164I
1.02150 + 1.91904I 0.873774 + 0.783296I
u = 0.525867 + 1.092400I
a = 0.400089 + 1.030590I
b = 1.09956 1.76264I
2.17094 6.60740I 0.69632 + 10.88929I
u = 0.525867 1.092400I
a = 0.400089 1.030590I
b = 1.09956 + 1.76264I
2.17094 + 6.60740I 0.69632 10.88929I
u = 0.769126
a = 0.807876
b = 0.267033
1.54727 4.67400
u = 1.004830 + 0.721198I
a = 0.817876 0.261435I
b = 0.420704 + 1.060050I
5.67789 0.23429I 7.33450 + 1.57451I
u = 1.004830 0.721198I
a = 0.817876 + 0.261435I
b = 0.420704 1.060050I
5.67789 + 0.23429I 7.33450 1.57451I
u = 0.038388 + 0.751954I
a = 1.43109 + 0.27249I
b = 1.141290 + 0.618112I
0.97471 + 2.65784I 0.64848 4.81672I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.038388 0.751954I
a = 1.43109 0.27249I
b = 1.141290 0.618112I
0.97471 2.65784I 0.64848 + 4.81672I
u = 0.489616 + 1.163080I
a = 0.051203 0.505529I
b = 0.89249 + 1.30630I
1.75776 + 4.42520I 0. 2.66999I
u = 0.489616 1.163080I
a = 0.051203 + 0.505529I
b = 0.89249 1.30630I
1.75776 4.42520I 0. + 2.66999I
u = 0.634927 + 0.276340I
a = 1.29507 0.74684I
b = 0.103239 + 0.918524I
0.09044 + 2.10677I 3.45567 5.29032I
u = 0.634927 0.276340I
a = 1.29507 + 0.74684I
b = 0.103239 0.918524I
0.09044 2.10677I 3.45567 + 5.29032I
u = 0.725736 + 1.115000I
a = 0.122771 0.880273I
b = 0.87157 + 1.15445I
0.55823 + 5.04012I 8.95344 5.95960I
u = 0.725736 1.115000I
a = 0.122771 + 0.880273I
b = 0.87157 1.15445I
0.55823 5.04012I 8.95344 + 5.95960I
u = 1.33218
a = 0.419650
b = 0.343484
2.55385 14.8810
u = 0.801504 + 1.072620I
a = 0.171221 + 0.993803I
b = 1.18028 1.27689I
4.52542 + 6.79447I 5.00000 4.75364I
u = 0.801504 1.072620I
a = 0.171221 0.993803I
b = 1.18028 + 1.27689I
4.52542 6.79447I 5.00000 + 4.75364I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.748515 + 1.151140I
a = 0.050409 1.131160I
b = 1.37231 + 1.59702I
3.0688 14.3723I 0. + 8.23244I
u = 0.748515 1.151140I
a = 0.050409 + 1.131160I
b = 1.37231 1.59702I
3.0688 + 14.3723I 0. 8.23244I
u = 0.180695 + 1.380020I
a = 0.137763 0.704470I
b = 0.033690 + 0.557996I
3.28704 + 5.28886I 0. 7.01858I
u = 0.180695 1.380020I
a = 0.137763 + 0.704470I
b = 0.033690 0.557996I
3.28704 5.28886I 0. + 7.01858I
9
II.
I
u
2
= h−u
10
2u
9
+ · · · + b 4, u
9
u
8
+ · · · + a 2, u
11
+ u
10
+ · · · + u + 1i
(i) Arc colorings
a
1
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
10
=
u
9
+ u
8
+ 2u
7
+ 2u
6
+ 3u
5
+ 5u
4
+ 2u
3
+ 3u
2
+ u + 2
u
10
+ 2u
9
+ 3u
8
+ 5u
7
+ 6u
6
+ 10u
5
+ 9u
4
+ 8u
3
+ 9u
2
+ 4u + 4
a
8
=
3u
10
2u
9
6u
8
5u
7
8u
6
13u
5
3u
4
11u
3
4u + 1
2u
9
+ u
8
+ 4u
7
+ 3u
6
+ 5u
5
+ 8u
4
+ u
3
+ 8u
2
+ 3
a
6
=
u
u
3
+ u
a
5
=
u
9
+ u
8
+ 2u
7
+ 2u
6
+ 2u
5
+ 4u
4
+ u
3
+ 2u
2
u 1
u
9
u
8
2u
7
2u
6
3u
5
5u
4
2u
3
4u
2
u 2
a
9
=
u
7
u
6
u
5
u
4
u
3
3u
2
u
10
+ 3u
9
+ 4u
8
+ 7u
7
+ 8u
6
+ 12u
5
+ 13u
4
+ 9u
3
+ 11u
2
+ 4u + 4
a
11
=
3u
10
+ 4u
9
+ ··· + 8u + 5
2u
10
+ u
9
+ 5u
8
+ 4u
7
+ 7u
6
+ 11u
5
+ 4u
4
+ 13u
3
+ 2u
2
+ 6u + 2
a
4
=
2u
10
u
9
5u
8
4u
7
7u
6
11u
5
4u
4
13u
3
u
2
6u 1
u
10
2u
9
4u
8
5u
7
7u
6
10u
5
10u
4
10u
3
7u
2
6u 3
a
4
=
2u
10
u
9
5u
8
4u
7
7u
6
11u
5
4u
4
13u
3
u
2
6u 1
u
10
2u
9
4u
8
5u
7
7u
6
10u
5
10u
4
10u
3
7u
2
6u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
10
+ 13u
9
+ 12u
8
+ 29u
7
+ 28u
6
+ 45u
5
+ 59u
4
+ 24u
3
+ 55u
2
+ 6u + 23
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
+ u
10
+ 3u
9
+ 3u
8
+ 5u
7
+ 7u
6
+ 5u
5
+ 8u
4
+ 3u
3
+ 5u
2
+ u + 1
c
2
u
11
+ 5u
10
+ ··· 9u 1
c
3
u
11
u
10
2u
9
u
8
+ 2u
6
+ 5u
5
2u
4
+ 2u
3
4u
2
1
c
4
, c
5
u
11
+ u
10
+ 5u
9
+ 5u
8
+ 9u
7
+ 8u
6
+ 7u
5
+ 6u
4
+ 2u
3
+ 4u
2
+ 1
c
6
u
11
u
10
+ 3u
9
3u
8
+ 5u
7
7u
6
+ 5u
5
8u
4
+ 3u
3
5u
2
+ u 1
c
7
u
11
2u
10
3u
9
+ 8u
8
10u
6
+ 7u
5
+ 3u
4
6u
3
+ 2u
2
+ 2u 1
c
8
u
11
u
10
+ 5u
9
5u
8
+ 9u
7
8u
6
+ 7u
5
6u
4
+ 2u
3
4u
2
1
c
9
u
11
+ 4u
9
+ 2u
8
+ 2u
7
+ 5u
6
2u
5
+ u
3
2u
2
+ u + 1
c
10
u
11
+ 2u
10
3u
9
8u
8
+ 10u
6
+ 7u
5
3u
4
6u
3
2u
2
+ 2u + 1
c
11
u
11
u
10
4u
9
+ 6u
8
+ 4u
7
12u
6
+ 7u
5
+ 6u
4
7u
3
u
2
+ 3u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
11
+ 5y
10
+ ··· 9y 1
c
2
y
11
+ y
10
+ ··· + 11y 1
c
3
y
11
5y
10
+ ··· 8y 1
c
4
, c
5
, c
8
y
11
+ 9y
10
+ ··· 8y 1
c
7
, c
10
y
11
10y
10
+ ··· + 8y 1
c
9
y
11
+ 8y
10
+ ··· + 5y 1
c
11
y
11
9y
10
+ ··· + 7y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.299778 + 0.927842I
a = 0.63272 + 1.53718I
b = 1.147890 0.441102I
4.88598 1.24077I 7.95477 0.13168I
u = 0.299778 0.927842I
a = 0.63272 1.53718I
b = 1.147890 + 0.441102I
4.88598 + 1.24077I 7.95477 + 0.13168I
u = 0.363187 + 0.893448I
a = 0.626586 1.218740I
b = 0.332981 + 0.934382I
7.76852 + 1.52130I 0.55594 5.61462I
u = 0.363187 0.893448I
a = 0.626586 + 1.218740I
b = 0.332981 0.934382I
7.76852 1.52130I 0.55594 + 5.61462I
u = 0.735549 + 0.971108I
a = 0.249319 0.595629I
b = 1.286840 + 0.135867I
5.46767 + 2.92476I 5.12520 4.54367I
u = 0.735549 0.971108I
a = 0.249319 + 0.595629I
b = 1.286840 0.135867I
5.46767 2.92476I 5.12520 + 4.54367I
u = 1.27239
a = 0.381829
b = 0.0451978
2.76650 23.9440
u = 0.535222 + 1.201170I
a = 0.093193 + 0.766402I
b = 0.63928 1.45867I
1.44280 5.48967I 2.58502 + 8.73904I
u = 0.535222 1.201170I
a = 0.093193 0.766402I
b = 0.63928 + 1.45867I
1.44280 + 5.48967I 2.58502 8.73904I
u = 0.127541 + 0.574472I
a = 1.39365 + 0.29759I
b = 1.76363 + 0.62512I
1.73238 + 2.30988I 9.96723 2.64055I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.127541 0.574472I
a = 1.39365 0.29759I
b = 1.76363 0.62512I
1.73238 2.30988I 9.96723 + 2.64055I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
+ u
10
+ 3u
9
+ 3u
8
+ 5u
7
+ 7u
6
+ 5u
5
+ 8u
4
+ 3u
3
+ 5u
2
+ u + 1)
· (u
44
+ 8u
42
+ ··· + 28u + 19)
c
2
(u
11
+ 5u
10
+ ··· 9u 1)(u
44
+ 16u
43
+ ··· + 3928u + 361)
c
3
(u
11
u
10
2u
9
u
8
+ 2u
6
+ 5u
5
2u
4
+ 2u
3
4u
2
1)
· (u
44
+ 4u
43
+ ··· + 13u + 1)
c
4
, c
5
(u
11
+ u
10
+ 5u
9
+ 5u
8
+ 9u
7
+ 8u
6
+ 7u
5
+ 6u
4
+ 2u
3
+ 4u
2
+ 1)
· (u
44
+ 2u
43
+ ··· 11u 1)
c
6
(u
11
u
10
+ 3u
9
3u
8
+ 5u
7
7u
6
+ 5u
5
8u
4
+ 3u
3
5u
2
+ u 1)
· (u
44
+ 8u
42
+ ··· + 28u + 19)
c
7
(u
11
2u
10
3u
9
+ 8u
8
10u
6
+ 7u
5
+ 3u
4
6u
3
+ 2u
2
+ 2u 1)
· (u
44
+ u
43
+ ··· 41u + 11)
c
8
(u
11
u
10
+ 5u
9
5u
8
+ 9u
7
8u
6
+ 7u
5
6u
4
+ 2u
3
4u
2
1)
· (u
44
+ 2u
43
+ ··· 11u 1)
c
9
(u
11
+ 4u
9
+ 2u
8
+ 2u
7
+ 5u
6
2u
5
+ u
3
2u
2
+ u + 1)
· (u
44
u
43
+ ··· 14u 1)
c
10
(u
11
+ 2u
10
3u
9
8u
8
+ 10u
6
+ 7u
5
3u
4
6u
3
2u
2
+ 2u + 1)
· (u
44
+ u
43
+ ··· 41u + 11)
c
11
(u
11
u
10
4u
9
+ 6u
8
+ 4u
7
12u
6
+ 7u
5
+ 6u
4
7u
3
u
2
+ 3u 1)
· (u
44
+ 2u
43
+ ··· + 12u 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
11
+ 5y
10
+ ··· 9y 1)(y
44
+ 16y
43
+ ··· + 3928y + 361)
c
2
(y
11
+ y
10
+ ··· + 11y 1)(y
44
+ 24y
43
+ ··· 363932y + 130321)
c
3
(y
11
5y
10
+ ··· 8y 1)(y
44
42y
43
+ ··· 5y + 1)
c
4
, c
5
, c
8
(y
11
+ 9y
10
+ ··· 8y 1)(y
44
+ 12y
43
+ ··· 37y + 1)
c
7
, c
10
(y
11
10y
10
+ ··· + 8y 1)(y
44
15y
43
+ ··· 2869y + 121)
c
9
(y
11
+ 8y
10
+ ··· + 5y 1)(y
44
+ 7y
43
+ ··· 54y + 1)
c
11
(y
11
9y
10
+ ··· + 7y 1)(y
44
38y
43
+ ··· 96y + 1)
16