11n
134
(K11n
134
)
A knot diagram
1
Linearized knot diagam
7 1 10 1 8 2 11 5 4 7 9
Solving Sequence
9,11 1,5
4 8 7 2 3 6 10
c
11
c
4
c
8
c
7
c
1
c
2
c
6
c
10
c
3
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h9.34789 × 10
32
u
33
5.58712 × 10
32
u
32
+ ··· + 1.57006 × 10
31
b 1.59332 × 10
33
,
3.16774 × 10
33
u
33
1.98307 × 10
33
u
32
+ ··· + 1.57006 × 10
31
a 4.97227 × 10
33
, u
34
4u
32
+ ··· 8u 1i
I
u
2
= h2u
6
u
5
3u
4
+ 6u
3
+ 2u
2
+ b 6u + 2, 3u
6
u
5
4u
4
+ 9u
3
+ 4u
2
+ a 7u + 3,
u
7
u
6
u
5
+ 4u
4
u
3
3u
2
+ 3u 1i
I
u
3
= hu
2
+ b u 1, u
2
+ a + 2u 1, u
4
2u
3
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h9.35 × 10
32
u
33
5.59 × 10
32
u
32
+ · · · + 1.57 × 10
31
b 1.59 × 10
33
, 3.17 ×
10
33
u
33
1.98×10
33
u
32
+· · ·+1.57×10
31
a4.97×10
33
, u
34
4u
32
+· · ·8u1i
(i) Arc colorings
a
9
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
5
=
201.759u
33
+ 126.306u
32
+ ··· + 2044.63u + 316.694
59.5386u
33
+ 35.5855u
32
+ ··· + 631.913u + 101.482
a
4
=
64.0473u
33
+ 42.6334u
32
+ ··· + 604.027u + 88.9064
110.441u
33
+ 66.5690u
32
+ ··· + 1163.58u + 185.154
a
8
=
126.520u
33
77.8350u
32
+ ··· 1331.80u 221.282
144.062u
33
89.2523u
32
+ ··· 1486.79u 232.342
a
7
=
17.5420u
33
+ 11.4173u
32
+ ··· + 154.996u + 11.0598
144.062u
33
89.2523u
32
+ ··· 1486.79u 232.342
a
2
=
191.791u
33
115.291u
32
+ ··· 2025.26u 313.383
1.17243u
33
+ 1.47552u
32
+ ··· + 5.92933u + 1.12007
a
3
=
123.827u
33
75.2327u
32
+ ··· 1300.65u 199.211
22.2954u
33
12.2052u
32
+ ··· 246.576u 38.9385
a
6
=
403.100u
33
+ 247.007u
32
+ ··· + 4184.10u + 645.587
156.172u
33
+ 97.4389u
32
+ ··· + 1597.51u + 249.393
a
10
=
68.1247u
33
+ 44.5777u
32
+ ··· + 659.086u + 90.0150
28.9676u
33
18.5354u
32
+ ··· 294.427u 45.6978
a
10
=
68.1247u
33
+ 44.5777u
32
+ ··· + 659.086u + 90.0150
28.9676u
33
18.5354u
32
+ ··· 294.427u 45.6978
(ii) Obstruction class = 1
(iii) Cusp Shapes = 263.563u
33
150.065u
32
+ ··· 2900.73u 454.146
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
34
+ u
33
+ ··· 223u + 11
c
2
u
34
+ 39u
33
+ ··· 30545u + 121
c
3
, c
9
u
34
+ 2u
32
+ ··· 30u + 11
c
4
u
34
+ 6u
33
+ ··· + 88u 16
c
5
, c
8
u
34
+ 3u
33
+ ··· + 73u + 11
c
7
, c
10
u
34
u
33
+ ··· 33u 1
c
11
u
34
4u
32
+ ··· 8u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
34
+ 39y
33
+ ··· 30545y + 121
c
2
y
34
89y
33
+ ··· 1039040457y + 14641
c
3
, c
9
y
34
+ 4y
33
+ ··· 1054y + 121
c
4
y
34
+ 18y
33
+ ··· 5440y + 256
c
5
, c
8
y
34
+ 29y
33
+ ··· + 1513y + 121
c
7
, c
10
y
34
+ 3y
33
+ ··· 1291y + 1
c
11
y
34
8y
33
+ ··· 28y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.924018 + 0.522770I
a = 0.375288 1.086530I
b = 0.664139 + 0.876476I
0.24666 + 2.01770I 4.06600 3.01899I
u = 0.924018 0.522770I
a = 0.375288 + 1.086530I
b = 0.664139 0.876476I
0.24666 2.01770I 4.06600 + 3.01899I
u = 0.692709 + 0.537257I
a = 1.68375 0.87571I
b = 0.097108 0.209897I
4.70800 5.46166I 4.56324 + 8.11055I
u = 0.692709 0.537257I
a = 1.68375 + 0.87571I
b = 0.097108 + 0.209897I
4.70800 + 5.46166I 4.56324 8.11055I
u = 1.174930 + 0.138364I
a = 0.388486 0.340737I
b = 0.104920 0.756129I
5.26138 1.82293I 12.08014 + 4.65351I
u = 1.174930 0.138364I
a = 0.388486 + 0.340737I
b = 0.104920 + 0.756129I
5.26138 + 1.82293I 12.08014 4.65351I
u = 0.737393 + 0.938306I
a = 0.971739 + 0.588253I
b = 1.48087 0.04096I
4.16665 + 0.08364I 1.19426 1.11998I
u = 0.737393 0.938306I
a = 0.971739 0.588253I
b = 1.48087 + 0.04096I
4.16665 0.08364I 1.19426 + 1.11998I
u = 0.748098 + 1.032910I
a = 0.963309 0.180793I
b = 1.65602 + 0.67677I
1.76083 + 4.62537I 0. 4.38948I
u = 0.748098 1.032910I
a = 0.963309 + 0.180793I
b = 1.65602 0.67677I
1.76083 4.62537I 0. + 4.38948I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.753821 + 1.029380I
a = 1.30677 + 0.54848I
b = 1.49027 0.72971I
11.55110 + 3.90804I 0. 2.96330I
u = 0.753821 1.029380I
a = 1.30677 0.54848I
b = 1.49027 + 0.72971I
11.55110 3.90804I 0. + 2.96330I
u = 0.680135
a = 1.12718
b = 0.231739
1.42028 5.52280
u = 0.112186 + 0.644139I
a = 0.298589 0.208281I
b = 0.77348 1.72822I
5.69136 + 2.93128I 2.16566 + 0.03766I
u = 0.112186 0.644139I
a = 0.298589 + 0.208281I
b = 0.77348 + 1.72822I
5.69136 2.93128I 2.16566 0.03766I
u = 0.453287 + 0.469740I
a = 0.109156 0.662192I
b = 0.134371 + 0.558494I
0.417699 + 1.309310I 4.01409 5.53427I
u = 0.453287 0.469740I
a = 0.109156 + 0.662192I
b = 0.134371 0.558494I
0.417699 1.309310I 4.01409 + 5.53427I
u = 0.929612 + 0.997075I
a = 0.739202 + 0.328423I
b = 1.79013 0.25646I
1.19710 + 4.22413I 0
u = 0.929612 0.997075I
a = 0.739202 0.328423I
b = 1.79013 + 0.25646I
1.19710 4.22413I 0
u = 1.090570 + 0.830918I
a = 0.948911 0.688424I
b = 1.45111 + 0.57971I
3.08759 6.63875I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.090570 0.830918I
a = 0.948911 + 0.688424I
b = 1.45111 0.57971I
3.08759 + 6.63875I 0
u = 0.622046 + 0.005377I
a = 1.15689 1.34706I
b = 1.42222 0.22309I
4.73573 + 2.86800I 6.77612 0.77716I
u = 0.622046 0.005377I
a = 1.15689 + 1.34706I
b = 1.42222 + 0.22309I
4.73573 2.86800I 6.77612 + 0.77716I
u = 0.585191
a = 2.47240
b = 0.385356
2.39902 9.40470
u = 1.17107 + 0.83565I
a = 0.599060 0.768632I
b = 1.62594 0.21586I
10.20860 + 2.99636I 0
u = 1.17107 0.83565I
a = 0.599060 + 0.768632I
b = 1.62594 + 0.21586I
10.20860 2.99636I 0
u = 0.89276 + 1.21384I
a = 0.677208 0.690623I
b = 1.67380 + 0.04106I
11.26850 + 5.15956I 0
u = 0.89276 1.21384I
a = 0.677208 + 0.690623I
b = 1.67380 0.04106I
11.26850 5.15956I 0
u = 1.15354 + 0.99005I
a = 0.987284 + 0.511276I
b = 1.81085 0.79676I
10.3471 13.0489I 0
u = 1.15354 0.99005I
a = 0.987284 0.511276I
b = 1.81085 + 0.79676I
10.3471 + 13.0489I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49990 + 0.45110I
a = 0.044192 + 0.529855I
b = 0.493623 0.408556I
1.03541 + 1.94405I 0
u = 1.49990 0.45110I
a = 0.044192 0.529855I
b = 0.493623 + 0.408556I
1.03541 1.94405I 0
u = 0.275516 + 0.088727I
a = 3.27050 3.61161I
b = 0.583860 + 0.707675I
1.94989 1.48394I 11.56368 0.88523I
u = 0.275516 0.088727I
a = 3.27050 + 3.61161I
b = 0.583860 0.707675I
1.94989 + 1.48394I 11.56368 + 0.88523I
8
II. I
u
2
= h2u
6
u
5
3u
4
+ 6u
3
+ 2u
2
+ b 6u + 2, 3u
6
u
5
4u
4
+ 9u
3
+
4u
2
+ a 7u + 3, u
7
u
6
u
5
+ 4u
4
u
3
3u
2
+ 3u 1i
(i) Arc colorings
a
9
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
5
=
3u
6
+ u
5
+ 4u
4
9u
3
4u
2
+ 7u 3
2u
6
+ u
5
+ 3u
4
6u
3
2u
2
+ 6u 2
a
4
=
u
5
+ u
3
2u
2
2u + 1
2u
6
+ 2u
5
+ 2u
4
7u
3
+ 6u 3
a
8
=
u
6
+ u
4
3u
3
2u
2
+ u 2
u
6
u
5
u
4
+ 4u
3
u
2
3u + 2
a
7
=
2u
6
+ u
5
+ 2u
4
7u
3
u
2
+ 4u 4
u
6
u
5
u
4
+ 4u
3
u
2
3u + 2
a
2
=
2u
6
+ 2u
4
5u
3
4u
2
+ 2u 1
u
6
+ 2u
4
3u
3
3u
2
+ 3u
a
3
=
u
6
u
5
2u
4
+ 4u
3
5u + 1
2u
6
+ u
5
+ 3u
4
7u
3
2u
2
+ 6u 2
a
6
=
7u
6
+ 3u
5
+ 9u
4
23u
3
7u
2
+ 18u 10
u
6
+ u
5
+ 2u
4
4u
3
+ 5u 2
a
10
=
2u
6
+ u
5
+ 3u
4
7u
3
2u
2
+ 7u 3
u
6
2u
4
+ 3u
3
+ 3u
2
4u + 1
a
10
=
2u
6
+ u
5
+ 3u
4
7u
3
2u
2
+ 7u 3
u
6
2u
4
+ 3u
3
+ 3u
2
4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21u
6
10u
5
27u
4
+ 69u
3
+ 15u
2
57u + 38
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
7
+ 3u
5
+ u
4
+ u
3
+ 3u
2
u + 1
c
2
u
7
+ 6u
6
+ 11u
5
+ 3u
4
11u
3
13u
2
5u 1
c
3
u
7
+ 2u
5
+ u
3
+ u
2
+ u + 1
c
4
u
7
u
6
+ 2u
5
4u
4
+ 13u
3
28u
2
+ 37u 21
c
5
u
7
+ u
6
+ u
5
+ u
4
+ 2u
2
+ 1
c
6
u
7
+ 3u
5
u
4
+ u
3
3u
2
u 1
c
7
u
7
4u
6
+ 6u
5
6u
4
+ 5u
3
u
2
u + 1
c
8
u
7
u
6
+ u
5
u
4
2u
2
1
c
9
u
7
+ 2u
5
+ u
3
u
2
+ u 1
c
10
u
7
+ 4u
6
+ 6u
5
+ 6u
4
+ 5u
3
+ u
2
u 1
c
11
u
7
u
6
u
5
+ 4u
4
u
3
3u
2
+ 3u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
7
+ 6y
6
+ 11y
5
+ 3y
4
11y
3
13y
2
5y 1
c
2
y
7
14y
6
+ 63y
5
105y
4
+ 101y
3
53y
2
y 1
c
3
, c
9
y
7
+ 4y
6
+ 6y
5
+ 6y
4
+ 5y
3
+ y
2
y 1
c
4
y
7
+ 3y
6
+ 22y
5
+ 54y
4
+ 51y
3
+ 10y
2
+ 193y 441
c
5
, c
8
y
7
+ y
6
y
5
5y
4
6y
3
6y
2
4y 1
c
7
, c
10
y
7
4y
6
2y
5
+ 14y
4
+ 9y
3
+ y
2
+ 3y 1
c
11
y
7
3y
6
+ 7y
5
14y
4
+ 17y
3
7y
2
+ 3y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.253390 + 0.299435I
a = 0.106502 + 0.574481I
b = 0.670425 + 0.632428I
4.48789 1.14089I 4.48970 0.40326I
u = 1.253390 0.299435I
a = 0.106502 0.574481I
b = 0.670425 0.632428I
4.48789 + 1.14089I 4.48970 + 0.40326I
u = 0.459759 + 0.484378I
a = 1.43538 0.05783I
b = 1.46152 + 0.86219I
5.24144 + 3.67154I 2.26281 7.80389I
u = 0.459759 0.484378I
a = 1.43538 + 0.05783I
b = 1.46152 0.86219I
5.24144 3.67154I 2.26281 + 7.80389I
u = 0.667034
a = 2.12191
b = 0.118597
2.66082 22.3150
u = 0.96011 + 1.04993I
a = 0.767929 0.281521I
b = 1.73179 + 0.66955I
0.57687 + 5.05320I 8.58977 8.09248I
u = 0.96011 1.04993I
a = 0.767929 + 0.281521I
b = 1.73179 0.66955I
0.57687 5.05320I 8.58977 + 8.09248I
12
III. I
u
3
= hu
2
+ b u 1, u
2
+ a + 2u 1, u
4
2u
3
+ u + 1i
(i) Arc colorings
a
9
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
5
=
u
2
2u + 1
u
2
+ u + 1
a
4
=
u
2
2u + 1
u
2
+ u + 1
a
8
=
2u
3
+ 5u
2
2u 2
1
a
7
=
2u
3
+ 5u
2
2u 3
1
a
2
=
u
3
+ u
2
+ 2u 2
u
a
3
=
u
3
+ 2u
2
+ u 3
u
3
+ u
2
+ 1
a
6
=
u
3
+ 2u
2
+ u 3
u
3
+ u
2
+ 1
a
10
=
2u
3
+ 5u
2
2u 2
1
a
10
=
2u
3
+ 5u
2
2u 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
8u
2
+ 11u + 11
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u
2
+ u + 1)
2
c
3
, c
5
u
4
+ u
3
+ 3u
2
+ u + 1
c
4
u
4
c
6
(u
2
u + 1)
2
c
7
(u + 1)
4
c
8
, c
9
u
4
u
3
+ 3u
2
u + 1
c
10
(u 1)
4
c
11
u
4
2u
3
+ u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
(y
2
+ y + 1)
2
c
3
, c
5
, c
8
c
9
y
4
+ 5y
3
+ 9y
2
+ 5y + 1
c
4
y
4
c
7
, c
10
(y 1)
4
c
11
y
4
4y
3
+ 6y
2
y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.473561 + 0.444772I
a = 1.97356 1.31080I
b = 0.500000 + 0.866025I
1.64493 2.02988I 5.75416 + 8.47377I
u = 0.473561 0.444772I
a = 1.97356 + 1.31080I
b = 0.500000 0.866025I
1.64493 + 2.02988I 5.75416 8.47377I
u = 1.47356 + 0.44477I
a = 0.026439 + 0.421254I
b = 0.500000 0.866025I
1.64493 + 2.02988I 13.74584 2.78456I
u = 1.47356 0.44477I
a = 0.026439 0.421254I
b = 0.500000 + 0.866025I
1.64493 2.02988I 13.74584 + 2.78456I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
+ u + 1)
2
(u
7
+ 3u
5
+ u
4
+ u
3
+ 3u
2
u + 1)
· (u
34
+ u
33
+ ··· 223u + 11)
c
2
(u
2
+ u + 1)
2
(u
7
+ 6u
6
+ 11u
5
+ 3u
4
11u
3
13u
2
5u 1)
· (u
34
+ 39u
33
+ ··· 30545u + 121)
c
3
(u
4
+ u
3
+ 3u
2
+ u + 1)(u
7
+ 2u
5
+ u
3
+ u
2
+ u + 1)
· (u
34
+ 2u
32
+ ··· 30u + 11)
c
4
u
4
(u
7
u
6
+ 2u
5
4u
4
+ 13u
3
28u
2
+ 37u 21)
· (u
34
+ 6u
33
+ ··· + 88u 16)
c
5
(u
4
+ u
3
+ 3u
2
+ u + 1)(u
7
+ u
6
+ u
5
+ u
4
+ 2u
2
+ 1)
· (u
34
+ 3u
33
+ ··· + 73u + 11)
c
6
(u
2
u + 1)
2
(u
7
+ 3u
5
u
4
+ u
3
3u
2
u 1)
· (u
34
+ u
33
+ ··· 223u + 11)
c
7
(u + 1)
4
(u
7
4u
6
+ 6u
5
6u
4
+ 5u
3
u
2
u + 1)
· (u
34
u
33
+ ··· 33u 1)
c
8
(u
4
u
3
+ 3u
2
u + 1)(u
7
u
6
+ u
5
u
4
2u
2
1)
· (u
34
+ 3u
33
+ ··· + 73u + 11)
c
9
(u
4
u
3
+ 3u
2
u + 1)(u
7
+ 2u
5
+ u
3
u
2
+ u 1)
· (u
34
+ 2u
32
+ ··· 30u + 11)
c
10
(u 1)
4
(u
7
+ 4u
6
+ 6u
5
+ 6u
4
+ 5u
3
+ u
2
u 1)
· (u
34
u
33
+ ··· 33u 1)
c
11
(u
4
2u
3
+ u + 1)(u
7
u
6
u
5
+ 4u
4
u
3
3u
2
+ 3u 1)
· (u
34
4u
32
+ ··· 8u 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
2
+ y + 1)
2
(y
7
+ 6y
6
+ 11y
5
+ 3y
4
11y
3
13y
2
5y 1)
· (y
34
+ 39y
33
+ ··· 30545y + 121)
c
2
(y
2
+ y + 1)
2
(y
7
14y
6
+ 63y
5
105y
4
+ 101y
3
53y
2
y 1)
· (y
34
89y
33
+ ··· 1039040457y + 14641)
c
3
, c
9
(y
4
+ 5y
3
+ 9y
2
+ 5y + 1)(y
7
+ 4y
6
+ 6y
5
+ 6y
4
+ 5y
3
+ y
2
y 1)
· (y
34
+ 4y
33
+ ··· 1054y + 121)
c
4
y
4
(y
7
+ 3y
6
+ 22y
5
+ 54y
4
+ 51y
3
+ 10y
2
+ 193y 441)
· (y
34
+ 18y
33
+ ··· 5440y + 256)
c
5
, c
8
(y
4
+ 5y
3
+ 9y
2
+ 5y + 1)(y
7
+ y
6
y
5
5y
4
6y
3
6y
2
4y 1)
· (y
34
+ 29y
33
+ ··· + 1513y + 121)
c
7
, c
10
(y 1)
4
(y
7
4y
6
2y
5
+ 14y
4
+ 9y
3
+ y
2
+ 3y 1)
· (y
34
+ 3y
33
+ ··· 1291y + 1)
c
11
(y
4
4y
3
+ 6y
2
y + 1)(y
7
3y
6
+ ··· + 3y 1)
· (y
34
8y
33
+ ··· 28y + 1)
18