11n
135
(K11n
135
)
A knot diagram
1
Linearized knot diagam
7 1 9 11 10 2 3 11 5 3 5
Solving Sequence
8,11 5,9
1 4 3 2 7 6 10
c
8
c
11
c
4
c
3
c
2
c
7
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h7u
9
24u
8
34u
7
+ 183u
6
48u
5
359u
4
+ 366u
3
130u
2
+ b + 40u 13,
13u
9
+ 45u
8
+ 63u
7
343u
6
+ 90u
5
+ 672u
4
681u
3
+ 245u
2
+ a 78u + 25,
u
10
4u
9
3u
8
+ 29u
7
21u
6
48u
5
+ 80u
4
47u
3
+ 16u
2
5u + 1i
I
u
2
= h−2u
7
11u
6
18u
5
6u
4
+ u
3
5u
2
+ b u 2, 2u
7
+ 12u
6
+ 23u
5
+ 12u
4
4u
3
+ u
2
+ a + 5u + 3,
u
8
+ 7u
7
+ 17u
6
+ 15u
5
+ u
4
+ 5u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 18 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h7u
9
24u
8
+· · ·+ b 13, 13u
9
+45u
8
+· · ·+ a + 25, u
10
4u
9
+· · ·5u+1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
5
=
13u
9
45u
8
+ ··· + 78u 25
7u
9
+ 24u
8
+ ··· 40u + 13
a
9
=
1
u
2
a
1
=
u
8
+ u
7
+ 8u
6
7u
5
16u
4
+ 14u
3
6u
2
+ u 1
u
9
u
8
8u
7
+ 7u
6
+ 16u
5
14u
4
+ 6u
3
u
2
+ 2u
a
4
=
13u
9
45u
8
+ ··· + 78u 25
11u
9
+ 37u
8
+ ··· 62u + 20
a
3
=
6u
9
21u
8
+ ··· + 38u 12
8u
9
+ 29u
8
+ ··· 49u + 16
a
2
=
8u
9
27u
8
+ ··· + 42u 11
10u
9
+ 36u
8
+ ··· 56u + 16
a
7
=
u
9
2u
8
7u
7
+ 15u
6
+ 9u
5
30u
4
+ 20u
3
7u
2
+ 3u + 1
u
9
+ u
8
+ 8u
7
7u
6
16u
5
+ 14u
4
7u
3
u
a
6
=
14u
9
+ 49u
8
+ ··· 84u + 27
5u
9
21u
8
+ ··· + 36u 12
a
10
=
u
9
2u
8
7u
7
+ 15u
6
+ 9u
5
30u
4
+ 20u
3
7u
2
+ 2u
2u
9
+ 4u
8
+ 14u
7
30u
6
18u
5
+ 60u
4
40u
3
+ 13u
2
4u + 1
a
10
=
u
9
2u
8
7u
7
+ 15u
6
+ 9u
5
30u
4
+ 20u
3
7u
2
+ 2u
2u
9
+ 4u
8
+ 14u
7
30u
6
18u
5
+ 60u
4
40u
3
+ 13u
2
4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 34u
9
+ 113u
8
+ 180u
7
868u
6
+ 117u
5
+ 1739u
4
1537u
3
+ 504u
2
157u + 39
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
10
+ 6u
9
+ ··· + 14u + 4
c
2
u
10
+ 4u
9
+ ··· + 36u + 16
c
3
, c
4
, c
11
u
10
+ u
9
10u
8
30u
7
+ 42u
6
+ 25u
5
18u
4
7u
3
10u
2
2u 1
c
5
, c
9
, c
10
u
10
2u
9
12u
8
+ 41u
7
+ 4u
6
+ 65u
5
+ 12u
4
18u
3
8u
2
+ u + 1
c
7
u
10
6u
9
+ ··· 42u + 180
c
8
u
10
+ 4u
9
3u
8
29u
7
21u
6
+ 48u
5
+ 80u
4
+ 47u
3
+ 16u
2
+ 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
10
+ 4y
9
+ ··· + 36y + 16
c
2
y
10
+ 4y
9
+ ··· 1648y + 256
c
3
, c
4
, c
11
y
10
21y
9
+ ··· + 16y + 1
c
5
, c
9
, c
10
y
10
28y
9
+ ··· 17y + 1
c
7
y
10
56y
9
+ ··· + 244836y + 32400
c
8
y
10
22y
9
+ ··· + 7y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.636857 + 0.087196I
a = 1.74049 + 0.14257I
b = 1.096010 0.242560I
4.86323 4.26845I 7.00188 + 6.39401I
u = 0.636857 0.087196I
a = 1.74049 0.14257I
b = 1.096010 + 0.242560I
4.86323 + 4.26845I 7.00188 6.39401I
u = 0.517366
a = 1.64352
b = 0.850302
1.55504 5.61010
u = 0.028208 + 0.344442I
a = 0.952320 + 0.624641I
b = 0.188290 + 0.345639I
0.422559 0.990373I 6.71540 + 6.78739I
u = 0.028208 0.344442I
a = 0.952320 0.624641I
b = 0.188290 0.345639I
0.422559 + 0.990373I 6.71540 6.78739I
u = 2.02110 + 0.32502I
a = 0.034489 + 0.196626I
b = 0.005798 + 0.408612I
5.72141 3.10928I 8.09311 + 4.32692I
u = 2.02110 0.32502I
a = 0.034489 0.196626I
b = 0.005798 0.408612I
5.72141 + 3.10928I 8.09311 4.32692I
u = 2.07184 + 0.16391I
a = 1.21022 + 1.00746I
b = 2.67252 1.88893I
17.7391 + 8.0399I 7.30663 2.83159I
u = 2.07184 0.16391I
a = 1.21022 1.00746I
b = 2.67252 + 1.88893I
17.7391 8.0399I 7.30663 + 2.83159I
u = 2.16387
a = 1.55661
b = 3.36830
13.1860 6.15590
5
II. I
u
2
= h−2u
7
11u
6
+ · · · + b 2, 2u
7
+ 12u
6
+ · · · + a + 3, u
8
+ 7u
7
+
17u
6
+ 15u
5
+ u
4
+ 5u
2
+ 2u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
5
=
2u
7
12u
6
23u
5
12u
4
+ 4u
3
u
2
5u 3
2u
7
+ 11u
6
+ 18u
5
+ 6u
4
u
3
+ 5u
2
+ u + 2
a
9
=
1
u
2
a
1
=
u
6
+ 6u
5
+ 11u
4
+ 4u
3
3u
2
+ 3u + 2
u
7
+ 6u
6
+ 11u
5
+ 4u
4
3u
3
+ 3u
2
+ 3u
a
4
=
2u
7
12u
6
23u
5
12u
4
+ 4u
3
u
2
5u 3
5u
7
+ 27u
6
+ 42u
5
+ 9u
4
6u
3
+ 14u
2
+ 3u + 4
a
3
=
u
6
5u
5
6u
4
+ 3u
3
+ 4u
2
4u 1
u
4
+ 3u
3
+ u
2
u + 1
a
2
=
u
6
4u
5
u
4
+ 9u
3
+ 2u
2
6u + 2
u
7
+ 7u
6
+ 16u
5
+ 12u
4
+ u
2
+ 4u + 2
a
7
=
u
7
+ 7u
6
+ 17u
5
+ 15u
4
+ u
3
+ 6u + 4
u
7
+ 6u
6
+ 11u
5
+ 4u
4
4u
3
+ 2u
2
+ 4u
a
6
=
u
7
6u
6
12u
5
9u
4
3u
3
u
2
2
u
5
3u
4
u
3
+ u
2
u
a
10
=
u
7
7u
6
17u
5
15u
4
u
3
5u 1
u
2
+ 1
a
10
=
u
7
7u
6
17u
5
15u
4
u
3
5u 1
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
+ 3u
6
4u
5
18u
4
9u
3
+ 7u
2
3u 14
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 2u
6
+ 3u
4
u
3
+ 2u
2
u + 1
c
2
u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 19u
4
+ 15u
3
+ 8u
2
+ 3u + 1
c
3
, c
11
u
8
+ u
6
+ u
5
2u
4
u + 1
c
4
u
8
+ u
6
u
5
2u
4
+ u + 1
c
5
, c
10
u
8
u
7
2u
4
+ u
3
+ u
2
+ 1
c
6
u
8
+ 2u
6
+ 3u
4
+ u
3
+ 2u
2
+ u + 1
c
7
u
8
+ 2u
6
5u
5
+ u
4
+ u
3
+ 5u
2
+ 3u + 1
c
8
u
8
+ 7u
7
+ 17u
6
+ 15u
5
+ u
4
+ 5u
2
+ 2u + 1
c
9
u
8
+ u
7
2u
4
u
3
+ u
2
+ 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
8
+ 4y
7
+ 10y
6
+ 16y
5
+ 19y
4
+ 15y
3
+ 8y
2
+ 3y + 1
c
2
y
8
+ 4y
7
+ 10y
6
+ 20y
5
+ 19y
4
+ 3y
3
+ 12y
2
+ 7y + 1
c
3
, c
4
, c
11
y
8
+ 2y
7
3y
6
5y
5
+ 6y
4
+ 4y
3
4y
2
y + 1
c
5
, c
9
, c
10
y
8
y
7
4y
6
+ 4y
5
+ 6y
4
5y
3
3y
2
+ 2y + 1
c
7
y
8
+ 4y
7
+ 6y
6
11y
5
+ 33y
4
+ 43y
3
+ 21y
2
+ y + 1
c
8
y
8
15y
7
+ 81y
6
181y
5
+ 145y
4
16y
3
+ 27y
2
+ 6y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500771 + 0.460860I
a = 0.735484 + 0.913410I
b = 0.789263 + 0.118455I
3.52853 0.48963I 9.23600 1.05814I
u = 0.500771 0.460860I
a = 0.735484 0.913410I
b = 0.789263 0.118455I
3.52853 + 0.48963I 9.23600 + 1.05814I
u = 1.50739 + 0.11112I
a = 0.165592 0.902942I
b = 0.149281 + 1.379480I
2.76707 + 1.04226I 7.14108 + 0.01449I
u = 1.50739 0.11112I
a = 0.165592 + 0.902942I
b = 0.149281 1.379480I
2.76707 1.04226I 7.14108 0.01449I
u = 0.172493 + 0.378694I
a = 1.50843 2.01752I
b = 1.024220 0.223225I
5.60402 + 3.77609I 14.7696 2.3802I
u = 0.172493 0.378694I
a = 1.50843 + 2.01752I
b = 1.024220 + 0.223225I
5.60402 3.77609I 14.7696 + 2.3802I
u = 2.32089 + 0.26670I
a = 0.078321 0.360330I
b = 0.085673 + 0.857175I
6.36547 2.93267I 4.14670 + 1.68828I
u = 2.32089 0.26670I
a = 0.078321 + 0.360330I
b = 0.085673 0.857175I
6.36547 + 2.93267I 4.14670 1.68828I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 2u
6
+ 3u
4
u
3
+ 2u
2
u + 1)(u
10
+ 6u
9
+ ··· + 14u + 4)
c
2
(u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 19u
4
+ 15u
3
+ 8u
2
+ 3u + 1)
· (u
10
+ 4u
9
+ ··· + 36u + 16)
c
3
, c
11
(u
8
+ u
6
+ u
5
2u
4
u + 1)
· (u
10
+ u
9
10u
8
30u
7
+ 42u
6
+ 25u
5
18u
4
7u
3
10u
2
2u 1)
c
4
(u
8
+ u
6
u
5
2u
4
+ u + 1)
· (u
10
+ u
9
10u
8
30u
7
+ 42u
6
+ 25u
5
18u
4
7u
3
10u
2
2u 1)
c
5
, c
10
(u
8
u
7
2u
4
+ u
3
+ u
2
+ 1)
· (u
10
2u
9
12u
8
+ 41u
7
+ 4u
6
+ 65u
5
+ 12u
4
18u
3
8u
2
+ u + 1)
c
6
(u
8
+ 2u
6
+ 3u
4
+ u
3
+ 2u
2
+ u + 1)(u
10
+ 6u
9
+ ··· + 14u + 4)
c
7
(u
8
+ 2u
6
+ ··· + 3u + 1)(u
10
6u
9
+ ··· 42u + 180)
c
8
(u
8
+ 7u
7
+ 17u
6
+ 15u
5
+ u
4
+ 5u
2
+ 2u + 1)
· (u
10
+ 4u
9
3u
8
29u
7
21u
6
+ 48u
5
+ 80u
4
+ 47u
3
+ 16u
2
+ 5u + 1)
c
9
(u
8
+ u
7
2u
4
u
3
+ u
2
+ 1)
· (u
10
2u
9
12u
8
+ 41u
7
+ 4u
6
+ 65u
5
+ 12u
4
18u
3
8u
2
+ u + 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
8
+ 4y
7
+ 10y
6
+ 16y
5
+ 19y
4
+ 15y
3
+ 8y
2
+ 3y + 1)
· (y
10
+ 4y
9
+ ··· + 36y + 16)
c
2
(y
8
+ 4y
7
+ 10y
6
+ 20y
5
+ 19y
4
+ 3y
3
+ 12y
2
+ 7y + 1)
· (y
10
+ 4y
9
+ ··· 1648y + 256)
c
3
, c
4
, c
11
(y
8
+ 2y
7
3y
6
5y
5
+ 6y
4
+ 4y
3
4y
2
y + 1)
· (y
10
21y
9
+ ··· + 16y + 1)
c
5
, c
9
, c
10
(y
8
y
7
4y
6
+ 4y
5
+ 6y
4
5y
3
3y
2
+ 2y + 1)
· (y
10
28y
9
+ ··· 17y + 1)
c
7
(y
8
+ 4y
7
+ 6y
6
11y
5
+ 33y
4
+ 43y
3
+ 21y
2
+ y + 1)
· (y
10
56y
9
+ ··· + 244836y + 32400)
c
8
(y
8
15y
7
+ 81y
6
181y
5
+ 145y
4
16y
3
+ 27y
2
+ 6y + 1)
· (y
10
22y
9
+ ··· + 7y + 1)
11