11n
138
(K11n
138
)
A knot diagram
1
Linearized knot diagam
8 1 9 8 10 11 2 4 1 6 5
Solving Sequence
1,8 2,4
5 9 10 3 7 11 6
c
1
c
4
c
8
c
9
c
3
c
7
c
11
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
8
u
7
8u
6
5u
5
12u
4
3u
3
+ 20u
2
+ 8b + u + 1, a 1,
u
9
+ 9u
7
3u
6
+ 23u
5
15u
4
+ 7u
3
5u
2
1i
I
u
2
= hb
3
+ b
2
u 3b
2
2bu + 3b + 2u 1, a + 1, u
2
+ 1i
I
u
3
= hb 1, u
3
+ 6u
2
+ 15a + 4u + 20, u
4
+ u
3
+ 4u
2
+ 5i
* 3 irreducible components of dim
C
= 0, with total 19 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
8
u
7
+· · ·+8b+1, a1, u
9
+9u
7
3u
6
+23u
5
15u
4
+7u
3
5u
2
1i
(i) Arc colorings
a
1
=
1
0
a
8
=
0
u
a
2
=
1
u
2
a
4
=
1
1
8
u
8
+
1
8
u
7
+ ···
1
8
u
1
8
a
5
=
1
1
8
u
8
+
1
8
u
7
+ ···
1
8
u
1
8
a
9
=
u
1
8
u
8
1
8
u
7
+ ··· +
7
8
u +
1
8
a
10
=
1
8
u
8
1
8
u
7
+ ··· +
15
8
u +
1
8
1
8
u
8
1
8
u
7
+ ··· +
7
8
u +
1
8
a
3
=
u
2
+ 1
u
2
a
7
=
u
u
3
+ u
a
11
=
1
8
u
8
1
8
u
7
+ ··· +
1
8
u +
9
8
3
8
u
8
3
8
u
7
+ ··· +
5
8
u +
5
8
a
6
=
1
8
u
8
+
3
8
u
7
+ ···
7
8
u
1
8
1
8
u
8
+
3
8
u
7
+ ···
5
8
u
7
8
a
6
=
1
8
u
8
+
3
8
u
7
+ ···
7
8
u
1
8
1
8
u
8
+
3
8
u
7
+ ···
5
8
u
7
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
8
+ 2u
7
27
2
u
6
+ 22u
5
40u
4
+ 64u
3
73
2
u
2
+ 10u
9
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
u
9
+ 9u
7
+ 3u
6
+ 23u
5
+ 15u
4
+ 7u
3
+ 5u
2
+ 1
c
2
u
9
+ 18u
8
+ ··· 10u 1
c
5
, c
6
, c
10
u
9
3u
8
+ 5u
6
+ u
5
2u
4
9u
3
+ 5u
2
+ u + 2
c
9
u
9
+ u
8
+ 22u
7
+ 19u
6
+ 127u
5
+ 84u
4
+ 67u
3
41u
2
+ 23u + 8
c
11
u
9
+ 9u
8
+ 38u
7
+ 85u
6
+ 87u
5
18u
4
147u
3
167u
2
85u 26
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
y
9
+ 18y
8
+ ··· 10y 1
c
2
y
9
70y
8
+ ··· 10y 1
c
5
, c
6
, c
10
y
9
9y
8
+ 32y
7
55y
6
+ 53y
5
60y
4
+ 83y
3
35y
2
19y 4
c
9
y
9
+ 43y
8
+ ··· + 1185y 64
c
11
y
9
5y
8
+ ··· 1459y 676
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.721273
a = 1.00000
b = 0.684414
3.38429 0.599760
u = 0.159982 + 0.567821I
a = 1.00000
b = 0.666256 0.688894I
4.68408 + 3.45373I 2.44779 5.78928I
u = 0.159982 0.567821I
a = 1.00000
b = 0.666256 + 0.688894I
4.68408 3.45373I 2.44779 + 5.78928I
u = 0.198901 + 0.378443I
a = 1.00000
b = 0.170075 + 0.364475I
0.131099 0.964036I 2.44921 + 7.22651I
u = 0.198901 0.378443I
a = 1.00000
b = 0.170075 0.364475I
0.131099 + 0.964036I 2.44921 7.22651I
u = 0.14689 + 2.12129I
a = 1.00000
b = 2.55711 0.09982I
17.5620 + 3.0332I 3.21143 2.16261I
u = 0.14689 2.12129I
a = 1.00000
b = 2.55711 + 0.09982I
17.5620 3.0332I 3.21143 + 2.16261I
u = 0.46861 + 2.14498I
a = 1.00000
b = 2.43701 + 0.25982I
14.7600 7.7767I 5.49011 + 2.86525I
u = 0.46861 2.14498I
a = 1.00000
b = 2.43701 0.25982I
14.7600 + 7.7767I 5.49011 2.86525I
5
II. I
u
2
= hb
3
+ b
2
u 3b
2
2bu + 3b + 2u 1, a + 1, u
2
+ 1i
(i) Arc colorings
a
1
=
1
0
a
8
=
0
u
a
2
=
1
1
a
4
=
1
b
a
5
=
1
b 1
a
9
=
u
bu + u
a
10
=
bu + 2u
bu + u
a
3
=
0
1
a
7
=
u
0
a
11
=
b
b
2
+ 2b 1
a
6
=
b
2
u b
2
+ 2bu + 2b 2u 2
b
2
u + 2bu + b 2u 1
a
6
=
b
2
u b
2
+ 2bu + 2b 2u 2
b
2
u + 2bu + b 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4bu + 4u 4
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
(u
2
+ 1)
3
c
2
(u + 1)
6
c
5
, c
6
, c
10
u
6
3u
4
+ 2u
2
+ 1
c
9
(u
3
u
2
+ 1)
2
c
11
u
6
+ u
4
+ 2u
2
+ 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
(y + 1)
6
c
2
(y 1)
6
c
5
, c
6
, c
10
(y
3
3y
2
+ 2y + 1)
2
c
9
(y
3
y
2
+ 2y 1)
2
c
11
(y
3
+ y
2
+ 2y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 0.255138 0.877439I
6.31400 2.82812I 7.50976 + 2.97945I
u = 1.000000I
a = 1.00000
b = 1.000000 + 0.754878I
2.17641 6 0.980489 + 0.10I
u = 1.000000I
a = 1.00000
b = 1.74486 0.87744I
6.31400 + 2.82812I 7.50976 2.97945I
u = 1.000000I
a = 1.00000
b = 0.255138 + 0.877439I
6.31400 + 2.82812I 7.50976 2.97945I
u = 1.000000I
a = 1.00000
b = 1.000000 0.754878I
2.17641 6 0.980489 + 0.10I
u = 1.000000I
a = 1.00000
b = 1.74486 + 0.87744I
6.31400 2.82812I 7.50976 + 2.97945I
9
III. I
u
3
= hb 1, u
3
+ 6u
2
+ 15a + 4u + 20, u
4
+ u
3
+ 4u
2
+ 5i
(i) Arc colorings
a
1
=
1
0
a
8
=
0
u
a
2
=
1
u
2
a
4
=
1
15
u
3
2
5
u
2
4
15
u
4
3
1
a
5
=
1
15
u
3
2
5
u
2
4
15
u
4
3
1
3
u
3
1
3
u
2
3
a
9
=
8
15
u
3
+
1
5
u
2
+
17
15
u
1
3
1
3
u
3
1
3
u +
1
3
a
10
=
1
5
u
3
+
1
5
u
2
+
4
5
u
1
3
u
3
1
3
u +
1
3
a
3
=
u
2
+ 1
u
2
a
7
=
u
u
3
+ u
a
11
=
4
15
u
3
3
5
u
2
1
15
u
1
3
u
3
u 1
a
6
=
2
15
u
3
4
5
u
2
8
15
u
5
3
2
3
u
3
2
3
u
4
3
a
6
=
2
15
u
3
4
5
u
2
8
15
u
5
3
2
3
u
3
2
3
u
4
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
u
4
u
3
+ 4u
2
+ 5
c
2
u
4
+ 7u
3
+ 26u
2
+ 40u + 25
c
5
, c
6
, c
10
(u
2
+ u 1)
2
c
9
(u
2
u 1)
2
c
11
(u
2
3u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
y
4
+ 7y
3
+ 26y
2
+ 40y + 25
c
2
y
4
+ 3y
3
+ 166y
2
300y + 625
c
5
, c
6
, c
9
c
10
(y
2
3y + 1)
2
c
11
(y
2
7y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.309017 + 1.134230I
a = 0.861803 0.507242I
b = 1.00000
4.27683 6.00000
u = 0.309017 1.134230I
a = 0.861803 + 0.507242I
b = 1.00000
4.27683 6.00000
u = 0.80902 + 1.72149I
a = 0.638197 + 0.769873I
b = 1.00000
12.1725 6.00000
u = 0.80902 1.72149I
a = 0.638197 0.769873I
b = 1.00000
12.1725 6.00000
13
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
(u
2
+ 1)
3
(u
4
u
3
+ 4u
2
+ 5)
· (u
9
+ 9u
7
+ 3u
6
+ 23u
5
+ 15u
4
+ 7u
3
+ 5u
2
+ 1)
c
2
((u + 1)
6
)(u
4
+ 7u
3
+ ··· + 40u + 25)(u
9
+ 18u
8
+ ··· 10u 1)
c
5
, c
6
, c
10
(u
2
+ u 1)
2
(u
6
3u
4
+ 2u
2
+ 1)
· (u
9
3u
8
+ 5u
6
+ u
5
2u
4
9u
3
+ 5u
2
+ u + 2)
c
9
(u
2
u 1)
2
(u
3
u
2
+ 1)
2
· (u
9
+ u
8
+ 22u
7
+ 19u
6
+ 127u
5
+ 84u
4
+ 67u
3
41u
2
+ 23u + 8)
c
11
(u
2
3u + 1)
2
(u
6
+ u
4
+ 2u
2
+ 1)
· (u
9
+ 9u
8
+ 38u
7
+ 85u
6
+ 87u
5
18u
4
147u
3
167u
2
85u 26)
14
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
8
((y + 1)
6
)(y
4
+ 7y
3
+ ··· + 40y + 25)(y
9
+ 18y
8
+ ··· 10y 1)
c
2
((y 1)
6
)(y
4
+ 3y
3
+ ··· 300y + 625)(y
9
70y
8
+ ··· 10y 1)
c
5
, c
6
, c
10
(y
2
3y + 1)
2
(y
3
3y
2
+ 2y + 1)
2
· (y
9
9y
8
+ 32y
7
55y
6
+ 53y
5
60y
4
+ 83y
3
35y
2
19y 4)
c
9
((y
2
3y + 1)
2
)(y
3
y
2
+ 2y 1)
2
(y
9
+ 43y
8
+ ··· + 1185y 64)
c
11
((y
2
7y + 1)
2
)(y
3
+ y
2
+ 2y + 1)
2
(y
9
5y
8
+ ··· 1459y 676)
15