11n
147
(K11n
147
)
A knot diagram
1
Linearized knot diagam
7 1 6 11 1 10 2 5 4 7 9
Solving Sequence
7,10 4,11
5 6 3 9 1 2 8
c
10
c
4
c
6
c
3
c
9
c
11
c
1
c
8
c
2
, c
5
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h1.98756 × 10
46
u
32
+ 1.28266 × 10
46
u
31
+ ··· + 1.35435 × 10
47
b + 2.77751 × 10
46
,
2.97484 × 10
47
u
32
+ 3.19635 × 10
47
u
31
+ ··· + 1.35435 × 10
47
a + 4.86114 × 10
48
, u
33
+ u
32
+ ··· + 14u + 1i
I
u
2
= hu
14
3u
12
u
11
+ u
10
+ 2u
9
+ 7u
8
4u
7
11u
6
+ 4u
5
+ 6u
4
5u
3
u
2
+ b,
73u
14
+ 113u
13
+ ··· + 19a + 238,
u
15
4u
13
u
12
+ 4u
11
+ 3u
10
+ 6u
9
6u
8
18u
7
+ 8u
6
+ 17u
5
9u
4
7u
3
+ 5u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.99 × 10
46
u
32
+ 1.28 × 10
46
u
31
+ · · · + 1.35 × 10
47
b + 2.78 × 10
46
, 2.97 ×
10
47
u
32
+3.20×10
47
u
31
+· · ·+1.35×10
47
a+4.86×10
48
, u
33
+u
32
+· · ·+14u+1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
2.19651u
32
2.36006u
31
+ ··· 288.611u 35.8928
0.146754u
32
0.0947065u
31
+ ··· 10.0032u 0.205081
a
11
=
1
u
2
a
5
=
2.39829u
32
2.50756u
31
+ ··· 303.100u 36.2614
0.153523u
32
0.103389u
31
+ ··· 10.5613u 0.259363
a
6
=
u
u
a
3
=
2.25912u
32
2.42484u
31
+ ··· 293.679u 36.1084
0.209360u
32
0.159488u
31
+ ··· 15.0713u 0.420679
a
9
=
1.41506u
32
+ 1.04966u
31
+ ··· + 69.0722u 12.5718
0.0802570u
32
0.116578u
31
+ ··· 12.6183u 1.15166
a
1
=
1.63104u
32
1.63496u
31
+ ··· 199.736u 22.5435
0.0316774u
32
0.0129877u
31
+ ··· 6.21518u 0.0761096
a
2
=
1.63104u
32
1.63496u
31
+ ··· 199.736u 22.5435
0.00657502u
32
0.00502953u
31
+ ··· 4.52928u 0.0721915
a
8
=
2.50333u
32
+ 2.57261u
31
+ ··· + 314.930u + 36.4507
0.0683064u
32
+ 0.0388114u
31
+ ··· + 8.35580u + 0.120011
a
8
=
2.50333u
32
+ 2.57261u
31
+ ··· + 314.930u + 36.4507
0.0683064u
32
+ 0.0388114u
31
+ ··· + 8.35580u + 0.120011
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.80265u
32
+ 1.77164u
31
+ ··· + 131.190u 2.63139
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
33
u
32
+ ··· 377u + 49
c
2
u
33
+ 51u
32
+ ··· 6243u + 2401
c
3
u
33
+ 4u
32
+ ··· + 1014u + 53
c
4
u
33
3u
32
+ ··· + 143u + 167
c
5
u
33
31u
31
+ ··· + 31219u + 7513
c
6
, c
10
u
33
+ u
32
+ ··· + 14u + 1
c
8
u
33
+ 3u
32
+ ··· + 43957u + 23657
c
9
u
33
+ u
32
+ ··· 194u + 69
c
11
u
33
+ 2u
32
+ ··· + 12u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
33
51y
32
+ ··· 6243y 2401
c
2
y
33
127y
32
+ ··· 823598607y 5764801
c
3
y
33
62y
32
+ ··· + 1267120y 2809
c
4
y
33
+ 13y
32
+ ··· + 203815y 27889
c
5
y
33
62y
32
+ ··· 187379697y 56445169
c
6
, c
10
y
33
31y
32
+ ··· 58y 1
c
8
y
33
35y
32
+ ··· + 2107894731y 559653649
c
9
y
33
+ 13y
32
+ ··· 3488y 4761
c
11
y
33
+ 4y
32
+ ··· + 94y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.127190 + 0.291980I
a = 0.90634 + 1.24177I
b = 0.280294 + 0.848945I
4.91531 2.57543I 14.7490 + 3.5042I
u = 1.127190 0.291980I
a = 0.90634 1.24177I
b = 0.280294 0.848945I
4.91531 + 2.57543I 14.7490 3.5042I
u = 0.258449 + 1.156160I
a = 0.118269 + 0.247166I
b = 0.381205 0.236102I
2.26695 + 2.07000I 4.04253 + 2.66758I
u = 0.258449 1.156160I
a = 0.118269 0.247166I
b = 0.381205 + 0.236102I
2.26695 2.07000I 4.04253 2.66758I
u = 1.214840 + 0.304735I
a = 0.676508 + 1.000140I
b = 0.363295 + 1.180830I
2.65106 + 0.57067I 7.43301 + 1.59468I
u = 1.214840 0.304735I
a = 0.676508 1.000140I
b = 0.363295 1.180830I
2.65106 0.57067I 7.43301 1.59468I
u = 1.203030 + 0.458288I
a = 0.26246 + 1.71772I
b = 1.23330 + 1.31569I
4.39762 + 3.59048I 13.6557 4.4501I
u = 1.203030 0.458288I
a = 0.26246 1.71772I
b = 1.23330 1.31569I
4.39762 3.59048I 13.6557 + 4.4501I
u = 1.235800 + 0.362699I
a = 0.03086 + 1.63923I
b = 0.508343 + 0.929615I
1.99613 4.92165I 6.31797 + 5.98553I
u = 1.235800 0.362699I
a = 0.03086 1.63923I
b = 0.508343 0.929615I
1.99613 + 4.92165I 6.31797 5.98553I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.569481
a = 0.688600
b = 0.604199
1.00066 10.2820
u = 0.173547 + 0.479626I
a = 0.525769 0.734371I
b = 0.526827 + 0.796028I
1.45039 + 0.21379I 8.69019 1.03252I
u = 0.173547 0.479626I
a = 0.525769 + 0.734371I
b = 0.526827 0.796028I
1.45039 0.21379I 8.69019 + 1.03252I
u = 0.129625 + 0.488487I
a = 0.477469 + 0.473795I
b = 0.889420 + 0.379105I
1.34993 + 1.55576I 0.80167 1.35691I
u = 0.129625 0.488487I
a = 0.477469 0.473795I
b = 0.889420 0.379105I
1.34993 1.55576I 0.80167 + 1.35691I
u = 1.52232 + 0.04381I
a = 0.703268 0.941307I
b = 0.711491 0.715800I
14.5102 1.0864I 12.76434 + 6.06201I
u = 1.52232 0.04381I
a = 0.703268 + 0.941307I
b = 0.711491 + 0.715800I
14.5102 + 1.0864I 12.76434 6.06201I
u = 0.078681 + 0.424703I
a = 0.651126 + 0.856956I
b = 0.868396 0.574824I
0.04954 + 4.46270I 2.71293 8.43854I
u = 0.078681 0.424703I
a = 0.651126 0.856956I
b = 0.868396 + 0.574824I
0.04954 4.46270I 2.71293 + 8.43854I
u = 1.59376 + 0.04874I
a = 0.476576 0.859038I
b = 1.93979 1.30100I
15.3428 2.1802I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59376 0.04874I
a = 0.476576 + 0.859038I
b = 1.93979 + 1.30100I
15.3428 + 2.1802I 0
u = 1.62635 + 0.11374I
a = 0.254364 1.108810I
b = 0.80851 1.54572I
6.41445 6.00796I 0
u = 1.62635 0.11374I
a = 0.254364 + 1.108810I
b = 0.80851 + 1.54572I
6.41445 + 6.00796I 0
u = 1.65170 + 0.20395I
a = 0.329105 0.879132I
b = 0.047223 1.078280I
5.75926 1.26707I 0
u = 1.65170 0.20395I
a = 0.329105 + 0.879132I
b = 0.047223 + 1.078280I
5.75926 + 1.26707I 0
u = 0.17496 + 1.66747I
a = 0.0254572 0.0404340I
b = 0.312479 1.241810I
11.57590 4.55852I 0
u = 0.17496 1.66747I
a = 0.0254572 + 0.0404340I
b = 0.312479 + 1.241810I
11.57590 + 4.55852I 0
u = 1.65356 + 0.67060I
a = 0.202508 1.183540I
b = 1.06866 1.49216I
17.3332 + 12.6517I 0
u = 1.65356 0.67060I
a = 0.202508 + 1.183540I
b = 1.06866 + 1.49216I
17.3332 12.6517I 0
u = 0.0667735 + 0.0884449I
a = 16.3648 15.7170I
b = 0.429817 0.686138I
9.04777 + 1.61427I 11.19487 + 6.80933I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0667735 0.0884449I
a = 16.3648 + 15.7170I
b = 0.429817 + 0.686138I
9.04777 1.61427I 11.19487 6.80933I
u = 1.71996 + 0.81176I
a = 0.271982 0.744516I
b = 0.638698 1.235990I
16.3377 4.4651I 0
u = 1.71996 0.81176I
a = 0.271982 + 0.744516I
b = 0.638698 + 1.235990I
16.3377 + 4.4651I 0
8
II. I
u
2
= hu
14
3u
12
+ · · · u
2
+ b, 73u
14
+ 113u
13
+ · · · + 19a +
238, u
15
4u
13
+ · · · + u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
3.84211u
14
5.94737u
13
+ ··· + 24.1053u 12.5263
u
14
+ 3u
12
+ ··· + 5u
3
+ u
2
a
11
=
1
u
2
a
5
=
0.526316u
14
3.84211u
13
+ ··· + 14.3158u 6.57895
3.36842u
14
+ 0.789474u
13
+ ··· 5.42105u + 2.10526
a
6
=
u
u
a
3
=
0.526316u
14
3.84211u
13
+ ··· + 13.3158u 6.57895
4.31579u
14
+ 2.10526u
13
+ ··· 10.7895u + 5.94737
a
9
=
9.31579u
14
+ 4.10526u
13
+ ··· 29.7895u + 8.94737
3u
13
+ 10u
11
+ ··· + 4u 4
a
1
=
0.526316u
14
+ 3.84211u
13
+ ··· 9.31579u + 7.57895
5.47368u
14
+ 8.15789u
13
+ ··· 28.6842u + 17.4211
a
2
=
0.526316u
14
+ 3.84211u
13
+ ··· 9.31579u + 7.57895
6.42105u
14
+ 9.47368u
13
+ ··· 33.0526u + 21.2632
a
8
=
3.94737u
14
4.31579u
13
+ ··· + 14.3684u 10.8421
6.57895u
14
10.5263u
13
+ ··· + 36.9474u 21.7368
a
8
=
3.94737u
14
4.31579u
13
+ ··· + 14.3684u 10.8421
6.57895u
14
10.5263u
13
+ ··· + 36.9474u 21.7368
(ii) Obstruction class = 1
(iii) Cusp Shapes =
124
19
u
14
+
301
19
u
13
+
478
19
u
12
941
19
u
11
746
19
u
10
+
339
19
u
9
2
19
u
8
+
2898
19
u
7
+
696
19
u
6
5366
19
u
5
218
19
u
4
+
4007
19
u
3
1063
19
u
2
1032
19
u +
296
19
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
8u
13
+ ··· 4u 1
c
2
u
15
+ 16u
14
+ ··· + 18u + 1
c
3
u
15
11u
14
+ ··· + 73u 19
c
4
u
15
2u
13
+ ··· 2u 1
c
5
u
15
u
14
+ ··· 4u 1
c
6
u
15
4u
13
+ ··· + u + 1
c
7
u
15
8u
13
+ ··· 4u + 1
c
8
u
15
2u
13
+ ··· + 2u + 1
c
9
u
15
+ 2u
12
+ 3u
10
+ 4u
8
+ 6u
7
6u
6
+ 10u
5
+ 5u
4
2u
3
+ 6u
2
u + 1
c
10
u
15
4u
13
+ ··· + u 1
c
11
u
15
3u
14
+ ··· + 3u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
15
16y
14
+ ··· + 18y 1
c
2
y
15
24y
14
+ ··· + 2y 1
c
3
y
15
19y
14
+ ··· + 1529y 361
c
4
y
15
4y
14
+ ··· 12y 1
c
5
y
15
7y
14
+ ··· 8y 1
c
6
, c
10
y
15
8y
14
+ ··· + 11y 1
c
8
y
15
4y
14
+ ··· 4y 1
c
9
y
15
4y
12
+ ··· 11y 1
c
11
y
15
y
14
+ ··· + 7y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.016610 + 0.431054I
a = 0.855984 + 1.067750I
b = 0.281730 + 1.208910I
3.57736 + 1.80398I 10.22776 1.35849I
u = 1.016610 0.431054I
a = 0.855984 1.067750I
b = 0.281730 1.208910I
3.57736 1.80398I 10.22776 + 1.35849I
u = 1.145500 + 0.390052I
a = 0.03040 + 1.79678I
b = 0.645353 + 1.166310I
2.97120 6.42822I 8.47318 + 7.69759I
u = 1.145500 0.390052I
a = 0.03040 1.79678I
b = 0.645353 1.166310I
2.97120 + 6.42822I 8.47318 7.69759I
u = 0.694258 + 0.135962I
a = 0.274946 + 0.699949I
b = 1.072130 + 0.630700I
0.80659 + 4.08294I 10.81787 3.73998I
u = 0.694258 0.135962I
a = 0.274946 0.699949I
b = 1.072130 0.630700I
0.80659 4.08294I 10.81787 + 3.73998I
u = 0.681806 + 0.019577I
a = 0.553972 0.968044I
b = 1.268190 + 0.099774I
0.12222 1.54750I 8.44941 + 2.09198I
u = 0.681806 0.019577I
a = 0.553972 + 0.968044I
b = 1.268190 0.099774I
0.12222 + 1.54750I 8.44941 2.09198I
u = 0.510989 + 0.449107I
a = 3.49622 0.96709I
b = 0.250601 + 0.599760I
9.05250 2.11036I 11.5344 + 8.6463I
u = 0.510989 0.449107I
a = 3.49622 + 0.96709I
b = 0.250601 0.599760I
9.05250 + 2.11036I 11.5344 8.6463I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.149147 + 1.334590I
a = 0.156974 0.043596I
b = 0.015421 + 0.481518I
1.95997 + 2.29980I 12.9306 8.8872I
u = 0.149147 1.334590I
a = 0.156974 + 0.043596I
b = 0.015421 0.481518I
1.95997 2.29980I 12.9306 + 8.8872I
u = 1.292720 + 0.392522I
a = 0.131181 + 1.312820I
b = 0.822319 + 0.854855I
3.07019 + 3.17344I 7.31876 2.82917I
u = 1.292720 0.392522I
a = 0.131181 1.312820I
b = 0.822319 0.854855I
3.07019 3.17344I 7.31876 + 2.82917I
u = 1.57907
a = 0.386597
b = 1.05733
14.5567 11.4960
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
8u
13
+ ··· 4u 1)(u
33
u
32
+ ··· 377u + 49)
c
2
(u
15
+ 16u
14
+ ··· + 18u + 1)(u
33
+ 51u
32
+ ··· 6243u + 2401)
c
3
(u
15
11u
14
+ ··· + 73u 19)(u
33
+ 4u
32
+ ··· + 1014u + 53)
c
4
(u
15
2u
13
+ ··· 2u 1)(u
33
3u
32
+ ··· + 143u + 167)
c
5
(u
15
u
14
+ ··· 4u 1)(u
33
31u
31
+ ··· + 31219u + 7513)
c
6
(u
15
4u
13
+ ··· + u + 1)(u
33
+ u
32
+ ··· + 14u + 1)
c
7
(u
15
8u
13
+ ··· 4u + 1)(u
33
u
32
+ ··· 377u + 49)
c
8
(u
15
2u
13
+ ··· + 2u + 1)(u
33
+ 3u
32
+ ··· + 43957u + 23657)
c
9
(u
15
+ 2u
12
+ 3u
10
+ 4u
8
+ 6u
7
6u
6
+ 10u
5
+ 5u
4
2u
3
+ 6u
2
u + 1)
· (u
33
+ u
32
+ ··· 194u + 69)
c
10
(u
15
4u
13
+ ··· + u 1)(u
33
+ u
32
+ ··· + 14u + 1)
c
11
(u
15
3u
14
+ ··· + 3u + 1)(u
33
+ 2u
32
+ ··· + 12u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
15
16y
14
+ ··· + 18y 1)(y
33
51y
32
+ ··· 6243y 2401)
c
2
(y
15
24y
14
+ ··· + 2y 1)
· (y
33
127y
32
+ ··· 823598607y 5764801)
c
3
(y
15
19y
14
+ ··· + 1529y 361)
· (y
33
62y
32
+ ··· + 1267120y 2809)
c
4
(y
15
4y
14
+ ··· 12y 1)(y
33
+ 13y
32
+ ··· + 203815y 27889)
c
5
(y
15
7y
14
+ ··· 8y 1)
· (y
33
62y
32
+ ··· 187379697y 56445169)
c
6
, c
10
(y
15
8y
14
+ ··· + 11y 1)(y
33
31y
32
+ ··· 58y 1)
c
8
(y
15
4y
14
+ ··· 4y 1)
· (y
33
35y
32
+ ··· + 2107894731y 559653649)
c
9
(y
15
4y
12
+ ··· 11y 1)(y
33
+ 13y
32
+ ··· 3488y 4761)
c
11
(y
15
y
14
+ ··· + 7y 1)(y
33
+ 4y
32
+ ··· + 94y 1)
15