11n
148
(K11n
148
)
A knot diagram
1
Linearized knot diagam
7 1 10 11 1 4 2 5 6 7 9
Solving Sequence
7,10 4,11
3 6 9 1 2 5 8
c
10
c
3
c
6
c
9
c
11
c
2
c
5
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 3936u
12
3615u
11
+ ··· + 1546a + 3493,
u
13
u
12
6u
11
+ 8u
10
+ 21u
9
27u
8
41u
7
+ 43u
6
+ 41u
5
35u
4
12u
3
+ 10u
2
+ u 1i
I
u
2
= hb u, 689759u
11
107599u
10
+ ··· + 501166a 3895672,
u
12
u
10
+ 4u
8
8u
7
+ 14u
6
+ 15u
5
33u
4
+ u
3
+ 26u
2
+ 3u + 1i
I
u
3
= hb + u, 280773u
15
+ 187752u
14
+ ··· + 478966a 1154354,
u
16
u
15
+ 5u
14
7u
13
+ 8u
12
15u
11
+ 8u
10
6u
9
+ 11u
8
+ 10u
7
+ 11u
5
4u
4
5u
3
+ u
2
+ u + 1i
I
u
4
= h−5u
7
11u
6
+ 19u
4
32u
3
9u
2
+ 16b + 41u + 18,
u
7
+ 5u
6
+ 12u
5
+ 3u
4
20u
3
+ 55u
2
+ 32a 31u + 2, u
8
+ u
7
2u
6
3u
5
+ 10u
4
7u
3
3u
2
+ 4i
I
u
5
= h1632242669u
15
3999460410u
14
+ ··· + 68858688392b + 15730031303,
1552686477u
15
+ 2916463782u
14
+ ··· + 57539451944a 28248685713,
u
16
u
15
+ ··· + 14u + 61i
I
u
6
= hb + u, a u, u
2
+ u + 1i
I
u
7
= hb u, a, u
2
+ u 1i
I
u
8
= hu
3
2u
2
+ b 1, u
3
u
2
+ a 2u 2, u
4
u
3
2u
2
2u 1i
* 8 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
1
I.
I
u
1
= hb u, 3936u
12
3615u
11
+ · · · + 1546a + 3493, u
13
u
12
+ · · · + u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
2.54592u
12
+ 2.33829u
11
+ ··· 14.3182u 2.25938
u
a
11
=
1
u
2
a
3
=
2.54592u
12
+ 2.33829u
11
+ ··· 13.3182u 2.25938
u
a
6
=
3.90815u
12
+ 3.32342u
11
+ ··· 14.3635u 2.48124
0.206339u
12
0.195990u
11
+ ··· + 3.33829u + 0.207633
a
9
=
1.25938u
12
0.286546u
11
+ ··· + 5.28008u 6.57762
u
2
+ 1
a
1
=
0.429495u
12
+ 1.13907u
11
+ ··· 10.4463u + 3.81307
0.197283u
12
+ 0.0588616u
11
+ ··· + 0.287840u 2.33959
a
2
=
0.429495u
12
+ 1.13907u
11
+ ··· 10.4463u + 3.81307
0.190168u
12
+ 0.120310u
11
+ ··· 0.851229u 0.771022
a
5
=
2.33959u
12
+ 2.14230u
11
+ ··· 10.9799u 2.05175
0.0679172u
12
0.0284605u
11
+ ··· + 1.19599u + 0.0103493
a
8
=
1.06210u
12
0.345408u
11
+ ··· + 4.99224u 4.23803
0.0394567u
12
0.188228u
11
+ ··· + 0.0575679u + 0.932083
a
8
=
1.06210u
12
0.345408u
11
+ ··· + 4.99224u 4.23803
0.0394567u
12
0.188228u
11
+ ··· + 0.0575679u + 0.932083
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5825
773
u
12
+
3398
773
u
11
+
36475
773
u
10
31741
773
u
9
135781
773
u
8
+
103033
773
u
7
+
280491
773
u
6
140065
773
u
5
289681
773
u
4
+
91807
773
u
3
+
95194
773
u
2
21889
773
u
11636
773
in decimal forms when there is not enough margin.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
13
6u
12
+ ··· 20u + 8
c
2
u
13
+ 10u
12
+ ··· + 208u + 64
c
3
, c
5
, c
8
c
10
u
13
+ u
12
+ ··· + u + 1
c
4
, c
9
u
13
2u
12
+ ··· u + 4
c
6
, c
11
u
13
+ 5u
12
+ ··· + 11u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
13
10y
12
+ ··· + 208y 64
c
2
y
13
14y
12
+ ··· 14080y 4096
c
3
, c
5
, c
8
c
10
y
13
13y
12
+ ··· + 21y 1
c
4
, c
9
y
13
+ 16y
11
+ ··· + 65y 16
c
6
, c
11
y
13
5y
12
+ ··· + 157y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.679240
a = 0.118511
b = 0.679240
0.985814 9.93790
u = 1.319410 + 0.222030I
a = 0.746615 0.655764I
b = 1.319410 + 0.222030I
1.44982 2.92540I 5.79046 + 3.21859I
u = 1.319410 0.222030I
a = 0.746615 + 0.655764I
b = 1.319410 0.222030I
1.44982 + 2.92540I 5.79046 3.21859I
u = 1.310050 + 0.430816I
a = 0.729761 + 0.359278I
b = 1.310050 + 0.430816I
9.72048 + 1.68662I 6.99569 + 0.12715I
u = 1.310050 0.430816I
a = 0.729761 0.359278I
b = 1.310050 0.430816I
9.72048 1.68662I 6.99569 0.12715I
u = 0.440196 + 0.153722I
a = 1.05333 + 2.17650I
b = 0.440196 + 0.153722I
0.31710 4.56636I 5.37309 + 4.90464I
u = 0.440196 0.153722I
a = 1.05333 2.17650I
b = 0.440196 0.153722I
0.31710 + 4.56636I 5.37309 4.90464I
u = 0.458477 + 0.058416I
a = 1.85684 + 0.90881I
b = 0.458477 + 0.058416I
2.02562 + 0.48569I 2.64958 + 0.42406I
u = 0.458477 0.058416I
a = 1.85684 0.90881I
b = 0.458477 0.058416I
2.02562 0.48569I 2.64958 0.42406I
u = 1.40672 + 0.68037I
a = 0.434994 0.837741I
b = 1.40672 + 0.68037I
1.01550 + 9.99038I 3.69502 7.61192I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40672 0.68037I
a = 0.434994 + 0.837741I
b = 1.40672 0.68037I
1.01550 9.99038I 3.69502 + 7.61192I
u = 1.57602 + 1.15308I
a = 0.173888 0.741516I
b = 1.57602 + 1.15308I
8.5808 15.4617I 4.82638 + 7.62465I
u = 1.57602 1.15308I
a = 0.173888 + 0.741516I
b = 1.57602 1.15308I
8.5808 + 15.4617I 4.82638 7.62465I
6
II. I
u
2
= hb u, 6.90 × 10
5
u
11
1.08 × 10
5
u
10
+ · · · + 5.01 × 10
5
a 3.90 ×
10
6
, u
12
u
10
+ · · · + 3u + 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
1.37631u
11
+ 0.214697u
10
+ ··· + 42.8501u + 7.77322
u
a
11
=
1
u
2
a
3
=
1.37631u
11
+ 0.214697u
10
+ ··· + 43.8501u + 7.77322
u
a
6
=
2.34713u
11
+ 0.345161u
10
+ ··· + 61.9493u + 17.9990
0.209352u
11
0.148428u
10
+ ··· + 3.02040u + 0.214697
a
9
=
1.45089u
11
0.0821125u
10
+ ··· + 40.5075u 3.80051
0.0710822u
11
+ 0.0690011u
10
+ ··· 0.602275u 0.458944
a
1
=
1.03465u
11
+ 0.0271287u
10
+ ··· + 28.9476u 0.912330
0.0773456u
11
+ 0.0652877u
10
+ ··· 0.188917u 0.249592
a
2
=
1.03465u
11
+ 0.0271287u
10
+ ··· + 28.9476u 0.912330
0.0341124u
11
+ 0.224690u
10
+ ··· 1.30495u 0.276721
a
5
=
1.58566u
11
+ 0.0662695u
10
+ ··· + 45.8705u + 7.98791
0.00371334u
11
0.251541u
10
+ ··· + 1.23593u + 0.148428
a
8
=
0.708286u
11
+ 0.253305u
10
+ ··· 15.0153u + 5.51408
0.251541u
11
0.0941345u
10
+ ··· + 0.137288u 0.00371334
a
8
=
0.708286u
11
+ 0.253305u
10
+ ··· 15.0153u + 5.51408
0.251541u
11
0.0941345u
10
+ ··· + 0.137288u 0.00371334
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2218099
501166
u
11
163295
250583
u
10
+ ··· +
55914373
501166
u
2178981
501166
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
6
4u
5
+ 6u
4
5u
3
+ 5u
2
6u + 4)
2
c
2
(u
6
+ 4u
5
+ 6u
4
+ 5u
3
+ 13u
2
4u + 16)
2
c
3
, c
5
, c
8
c
10
u
12
u
10
+ 4u
8
+ 8u
7
+ 14u
6
15u
5
33u
4
u
3
+ 26u
2
3u + 1
c
4
, c
9
(u
6
+ u
5
+ 3u
4
+ u
3
+ 4u
2
+ 1)
2
c
6
, c
11
u
12
+ 4u
11
+ ··· + 66u + 11
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
6
4y
5
+ 6y
4
5y
3
+ 13y
2
+ 4y + 16)
2
c
2
(y
6
4y
5
+ 22y
4
+ 195y
3
+ 401y
2
+ 400y + 256)
2
c
3
, c
5
, c
8
c
10
y
12
2y
11
+ ··· + 43y + 1
c
4
, c
9
(y
6
+ 5y
5
+ 15y
4
+ 25y
3
+ 22y
2
+ 8y + 1)
2
c
6
, c
11
y
12
4y
11
+ ··· 484y + 121
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.968045 + 0.076481I
a = 0.541139 1.217710I
b = 0.968045 + 0.076481I
2.70944 2.74874I 6.55410 + 3.66193I
u = 0.968045 0.076481I
a = 0.541139 + 1.217710I
b = 0.968045 0.076481I
2.70944 + 2.74874I 6.55410 3.66193I
u = 1.126210 + 0.587419I
a = 1.063370 + 0.516394I
b = 1.126210 + 0.587419I
9.45817 7.70670I 6.10501 + 5.38862I
u = 1.126210 0.587419I
a = 1.063370 0.516394I
b = 1.126210 0.587419I
9.45817 + 7.70670I 6.10501 5.38862I
u = 1.176980 + 0.755737I
a = 0.136599 0.758615I
b = 1.176980 + 0.755737I
2.70944 2.74874I 6.55410 + 3.66193I
u = 1.176980 0.755737I
a = 0.136599 + 0.758615I
b = 1.176980 0.755737I
2.70944 + 2.74874I 6.55410 3.66193I
u = 0.19389 + 1.60136I
a = 0.007131 0.411898I
b = 0.19389 + 1.60136I
3.94294 2.97593I 11.8409 + 20.9878I
u = 0.19389 1.60136I
a = 0.007131 + 0.411898I
b = 0.19389 1.60136I
3.94294 + 2.97593I 11.8409 20.9878I
u = 0.052940 + 0.185549I
a = 5.45961 + 8.32725I
b = 0.052940 + 0.185549I
3.94294 2.97593I 11.8409 + 20.9878I
u = 0.052940 0.185549I
a = 5.45961 8.32725I
b = 0.052940 0.185549I
3.94294 + 2.97593I 11.8409 20.9878I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.47610 + 1.13544I
a = 0.125567 0.653945I
b = 1.47610 + 1.13544I
9.45817 + 7.70670I 6.10501 5.38862I
u = 1.47610 1.13544I
a = 0.125567 + 0.653945I
b = 1.47610 1.13544I
9.45817 7.70670I 6.10501 + 5.38862I
11
III. I
u
3
= hb + u, 2.81 × 10
5
u
15
+ 1.88 × 10
5
u
14
+ · · · + 4.79 × 10
5
a 1.15 ×
10
6
, u
16
u
15
+ · · · + u + 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
0.586207u
15
0.391994u
14
+ ··· + 2.99697u + 2.41010
u
a
11
=
1
u
2
a
3
=
0.586207u
15
0.391994u
14
+ ··· + 1.99697u + 2.41010
u
a
6
=
1.60046u
15
1.09856u
14
+ ··· + 0.905045u + 5.14908
0.370010u
15
+ 0.495060u
14
+ ··· + 0.219581u 0.194212
a
9
=
0.982304u
15
+ 1.65935u
14
+ ··· 5.17282u + 0.456744
0.155410u
15
0.318879u
14
+ ··· + 0.496238u + 0.382754
a
1
=
0.459400u
15
0.696398u
14
+ ··· + 4.05434u + 0.305940
0.631821u
15
+ 0.786116u
14
+ ··· 0.118524u 0.511907
a
2
=
0.459400u
15
0.696398u
14
+ ··· + 4.05434u + 0.305940
0.726319u
15
+ 0.940998u
14
+ ··· 0.340926u 0.274909
a
5
=
0.956216u
15
0.887055u
14
+ ··· + 2.77739u + 2.60431
0.0409340u
15
0.0327789u
14
+ ··· 1.24496u + 0.125051
a
8
=
0.667893u
15
1.05794u
14
+ ··· + 2.47945u 1.10540
0.681729u
15
0.825163u
14
+ ··· 0.159324u + 0.901951
a
8
=
0.667893u
15
1.05794u
14
+ ··· + 2.47945u 1.10540
0.681729u
15
0.825163u
14
+ ··· 0.159324u + 0.901951
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1422603
239483
u
15
+
4693355
478966
u
14
+ ···
9817835
478966
u +
275497
478966
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
16
9u
14
+ 35u
12
82u
10
+ 133u
8
152u
6
+ 118u
4
56u
2
+ 13
c
2
(u
8
+ 9u
7
+ 35u
6
+ 82u
5
+ 133u
4
+ 152u
3
+ 118u
2
+ 56u + 13)
2
c
3
, c
5
, c
8
c
10
u
16
u
15
+ ··· + u + 1
c
4
, c
9
(u
8
+ u
7
u
5
3u
4
+ u
3
+ 4u
2
+ u + 1)
2
c
6
, c
11
u
16
9u
15
+ ··· 6u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
8
9y
7
+ 35y
6
82y
5
+ 133y
4
152y
3
+ 118y
2
56y + 13)
2
c
2
(y
8
11y
7
+ 15y
6
+ 86y
5
+ 39y
4
+ 10y
3
+ 358y
2
68y + 169)
2
c
3
, c
5
, c
8
c
10
y
16
+ 9y
15
+ ··· + y + 1
c
4
, c
9
(y
8
y
7
4y
6
+ 5y
5
+ 11y
4
23y
3
+ 8y
2
+ 7y + 1)
2
c
6
, c
11
y
16
9y
15
+ ··· 2y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.274263 + 1.008870I
a = 0.79810 + 1.33602I
b = 0.274263 1.008870I
1.71914 5.38582I 0.93122 + 9.75922I
u = 0.274263 1.008870I
a = 0.79810 1.33602I
b = 0.274263 + 1.008870I
1.71914 + 5.38582I 0.93122 9.75922I
u = 0.638849 + 1.040850I
a = 0.169502 + 1.235590I
b = 0.638849 1.040850I
2.34546 + 2.94891I 0.795967 + 0.602909I
u = 0.638849 1.040850I
a = 0.169502 1.235590I
b = 0.638849 + 1.040850I
2.34546 2.94891I 0.795967 0.602909I
u = 0.701878 + 0.091386I
a = 0.850232 0.808730I
b = 0.701878 0.091386I
1.71914 + 5.38582I 0.93122 9.75922I
u = 0.701878 0.091386I
a = 0.850232 + 0.808730I
b = 0.701878 + 0.091386I
1.71914 5.38582I 0.93122 + 9.75922I
u = 0.610814 + 0.255978I
a = 1.098150 0.544353I
b = 0.610814 0.255978I
2.34546 + 2.94891I 0.795967 + 0.602909I
u = 0.610814 0.255978I
a = 1.098150 + 0.544353I
b = 0.610814 + 0.255978I
2.34546 2.94891I 0.795967 0.602909I
u = 1.305320 + 0.359264I
a = 0.481994 + 0.934732I
b = 1.305320 0.359264I
6.45579 3.75611I 8.46169 + 3.08159I
u = 1.305320 0.359264I
a = 0.481994 0.934732I
b = 1.305320 + 0.359264I
6.45579 + 3.75611I 8.46169 3.08159I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.213253 + 0.417979I
a = 2.89265 + 2.89484I
b = 0.213253 0.417979I
4.03613 2.81197I 9.0969 15.4678I
u = 0.213253 0.417979I
a = 2.89265 2.89484I
b = 0.213253 + 0.417979I
4.03613 + 2.81197I 9.0969 + 15.4678I
u = 0.24620 + 1.56767I
a = 0.067177 + 0.435558I
b = 0.24620 1.56767I
4.03613 + 2.81197I 9.0969 + 15.4678I
u = 0.24620 1.56767I
a = 0.067177 0.435558I
b = 0.24620 + 1.56767I
4.03613 2.81197I 9.0969 15.4678I
u = 0.10979 + 1.65368I
a = 0.145647 + 0.120240I
b = 0.10979 1.65368I
6.45579 3.75611I 8.46169 + 3.08159I
u = 0.10979 1.65368I
a = 0.145647 0.120240I
b = 0.10979 + 1.65368I
6.45579 + 3.75611I 8.46169 3.08159I
16
IV. I
u
4
= h−5u
7
11u
6
+ · · · + 16b + 18, u
7
+ 5u
6
+ · · · + 32a + 2, u
8
+
u
7
2u
6
3u
5
+ 10u
4
7u
3
3u
2
+ 4i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
0.0312500u
7
0.156250u
6
+ ··· + 0.968750u 0.0625000
5
16
u
7
+
11
16
u
6
+ ···
41
16
u
9
8
a
11
=
1
u
2
a
3
=
0.343750u
7
+ 0.531250u
6
+ ··· 1.59375u 1.18750
5
16
u
7
+
11
16
u
6
+ ···
41
16
u
9
8
a
6
=
0.218750u
7
0.406250u
6
+ ··· + 1.71875u 0.0625000
1
16
u
7
1
16
u
6
+ ···
5
16
u +
3
8
a
9
=
0.0937500u
7
+ 0.281250u
6
+ ··· 0.343750u 0.687500
5
16
u
7
+
7
16
u
6
+ ···
5
16
u
5
8
a
1
=
0.0937500u
7
0.281250u
6
+ ··· + 0.843750u + 1.18750
5
16
u
7
7
16
u
6
+ ··· +
5
16
u +
13
8
a
2
=
0.0937500u
7
0.281250u
6
+ ··· + 0.843750u + 1.18750
0.437500u
7
0.562500u
6
+ ··· + 0.687500u + 2.37500
a
5
=
0.468750u
7
+ 0.906250u
6
+ ··· 1.46875u 1.93750
0.812500u
7
+ 1.68750u
6
+ ··· 4.31250u 3.62500
a
8
=
0.343750u
7
0.531250u
6
+ ··· + 1.59375u + 1.18750
0.562500u
7
0.937500u
6
+ ··· + 3.31250u + 2.62500
a
8
=
0.343750u
7
0.531250u
6
+ ··· + 1.59375u + 1.18750
0.562500u
7
0.937500u
6
+ ··· + 3.31250u + 2.62500
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
2
u
7
5
2
u
6
+
5
2
u
4
12u
3
+
17
2
u
2
1
2
u 7
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
2
+ u 1)
4
c
2
(u
2
+ 3u + 1)
4
c
3
, c
5
, c
8
c
10
u
8
u
7
2u
6
+ 3u
5
+ 10u
4
+ 7u
3
3u
2
+ 4
c
4
, c
9
u
8
3u
7
+ 8u
6
3u
5
+ 8u
4
3u
3
+ 7u
2
+ 16
c
6
, c
11
(u
2
u + 1)
4
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
3y + 1)
4
c
2
(y
2
7y + 1)
4
c
3
, c
5
, c
8
c
10
y
8
5y
7
+ 30y
6
41y
5
+ 78y
4
125y
3
+ 89y
2
24y + 16
c
4
, c
9
y
8
+ 7y
7
+ 62y
6
+ 115y
5
+ 190y
4
+ 359y
3
+ 305y
2
+ 224y + 256
c
6
, c
11
(y
2
+ y + 1)
4
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.024520 + 0.199293I
a = 0.628676 0.723008I
b = 1.83354 + 1.20197I
8.88264 + 4.05977I 10.00000 6.92820I
u = 1.024520 0.199293I
a = 0.628676 + 0.723008I
b = 1.83354 1.20197I
8.88264 4.05977I 10.00000 + 6.92820I
u = 0.785903 + 1.018910I
a = 0.295593 + 0.718718I
b = 0.476886 0.483675I
0.98696 4.05977I 10.00000 + 6.92820I
u = 0.785903 1.018910I
a = 0.295593 0.718718I
b = 0.476886 + 0.483675I
0.98696 + 4.05977I 10.00000 6.92820I
u = 0.476886 + 0.483675I
a = 0.39108 + 1.41935I
b = 0.785903 1.018910I
0.98696 + 4.05977I 10.00000 6.92820I
u = 0.476886 0.483675I
a = 0.39108 1.41935I
b = 0.785903 + 1.018910I
0.98696 4.05977I 10.00000 + 6.92820I
u = 1.83354 + 1.20197I
a = 0.025832 + 0.455391I
b = 1.024520 + 0.199293I
8.88264 + 4.05977I 10.00000 6.92820I
u = 1.83354 1.20197I
a = 0.025832 0.455391I
b = 1.024520 0.199293I
8.88264 4.05977I 10.00000 + 6.92820I
20
V.
I
u
5
= h1.63 × 10
9
u
15
4.00 × 10
9
u
14
+ · · · + 6.89 × 10
10
b + 1.57 × 10
10
, 1.55 ×
10
9
u
15
+2.92×10
9
u
14
+· · ·+5.75×10
10
a2.82×10
10
, u
16
u
15
+· · ·+14u+61i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
0.0269847u
15
0.0506863u
14
+ ··· + 0.983334u + 0.490945
0.0237042u
15
+ 0.0580821u
14
+ ··· 0.637455u 0.228439
a
11
=
1
u
2
a
3
=
0.00328049u
15
+ 0.00739581u
14
+ ··· + 0.345879u + 0.262505
0.0237042u
15
+ 0.0580821u
14
+ ··· 0.637455u 0.228439
a
6
=
0.0153528u
15
0.0613303u
14
+ ··· + 2.50796u 1.49414
0.0137597u
15
+ 0.0519593u
14
+ ··· 0.953981u + 0.952940
a
9
=
0.0119361u
15
0.0470317u
14
+ ··· + 1.26128u 0.453422
0.0267082u
15
0.0380007u
14
+ ··· + 0.241699u + 1.87605
a
1
=
0.0131130u
15
0.0237893u
14
+ ··· + 0.375432u 0.0329971
0.0392634u
15
+ 0.0682124u
14
+ ··· 0.0372592u 1.55608
a
2
=
0.0131130u
15
0.0237893u
14
+ ··· + 0.375432u 0.0329971
0.0376838u
15
+ 0.0837224u
14
+ ··· 0.687681u 0.904829
a
5
=
0.0137569u
15
0.0478038u
14
+ ··· + 1.66013u 1.18329
0.0333257u
15
0.0545032u
14
+ ··· + 0.314278u + 0.402625
a
8
=
0.00328049u
15
0.00739581u
14
+ ··· 0.345879u 0.262505
0.0268634u
15
0.0270621u
14
+ ··· 0.663389u + 1.53095
a
8
=
0.00328049u
15
0.00739581u
14
+ ··· 0.345879u 0.262505
0.0268634u
15
0.0270621u
14
+ ··· 0.663389u + 1.53095
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2099874
9069901
u
15
+
3556482
9069901
u
14
+ ···
26506214
9069901
u
45805682
9069901
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
2
+ u 1)
8
c
2
(u
2
+ 3u + 1)
8
c
3
, c
5
, c
8
c
10
u
16
+ u
15
+ ··· 14u + 61
c
4
, c
9
(u
8
+ u
7
+ 2u
6
5u
5
2u
4
+ 11u
3
+ 5u
2
+ 2u + 4)
2
c
6
, c
11
(u
4
u
3
+ 2u + 1)
4
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
3y + 1)
8
c
2
(y
2
7y + 1)
8
c
3
, c
5
, c
8
c
10
y
16
+ 13y
15
+ ··· + 5172y + 3721
c
4
, c
9
(y
8
+ 3y
7
+ 10y
6
45y
5
+ 138y
4
105y
3
35y
2
+ 36y + 16)
2
c
6
, c
11
(y
4
y
3
+ 6y
2
4y + 1)
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.627115 + 0.928941I
a = 0.219133 + 1.355720I
b = 0.409816 1.073270I
2.30291 + 4.05977I 2.00000 6.92820I
u = 0.627115 0.928941I
a = 0.219133 1.355720I
b = 0.409816 + 1.073270I
2.30291 4.05977I 2.00000 + 6.92820I
u = 0.664283 + 0.551323I
a = 0.415524 0.627471I
b = 0.756001 + 0.910051I
2.30291 4.05977I 2.00000 + 6.92820I
u = 0.664283 0.551323I
a = 0.415524 + 0.627471I
b = 0.756001 0.910051I
2.30291 + 4.05977I 2.00000 6.92820I
u = 0.409816 + 1.073270I
a = 0.508514 + 1.239550I
b = 0.627115 0.928941I
2.30291 4.05977I 2.00000 + 6.92820I
u = 0.409816 1.073270I
a = 0.508514 1.239550I
b = 0.627115 + 0.928941I
2.30291 + 4.05977I 2.00000 6.92820I
u = 1.009750 + 0.554510I
a = 0.413379 + 1.270590I
b = 1.57864 0.17666I
5.59278 + 4.05977I 2.00000 6.92820I
u = 1.009750 0.554510I
a = 0.413379 1.270590I
b = 1.57864 + 0.17666I
5.59278 4.05977I 2.00000 + 6.92820I
u = 0.756001 + 0.910051I
a = 0.457981 0.302983I
b = 0.664283 + 0.551323I
2.30291 4.05977I 2.00000 + 6.92820I
u = 0.756001 0.910051I
a = 0.457981 + 0.302983I
b = 0.664283 0.551323I
2.30291 + 4.05977I 2.00000 6.92820I
24
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.303235 + 1.148640I
a = 0.019154 0.546537I
b = 0.54336 + 2.67729I
5.59278 + 4.05977I 2.00000 6.92820I
u = 0.303235 1.148640I
a = 0.019154 + 0.546537I
b = 0.54336 2.67729I
5.59278 4.05977I 2.00000 + 6.92820I
u = 1.57864 + 0.17666I
a = 0.628149 + 0.737802I
b = 1.009750 0.554510I
5.59278 4.05977I 2.00000 + 6.92820I
u = 1.57864 0.17666I
a = 0.628149 0.737802I
b = 1.009750 + 0.554510I
5.59278 + 4.05977I 2.00000 6.92820I
u = 0.54336 + 2.67729I
a = 0.112628 0.209453I
b = 0.303235 + 1.148640I
5.59278 + 4.05977I 2.00000 6.92820I
u = 0.54336 2.67729I
a = 0.112628 + 0.209453I
b = 0.303235 1.148640I
5.59278 4.05977I 2.00000 + 6.92820I
25
VI. I
u
6
= hb + u, a u, u
2
+ u + 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
u
u
a
11
=
1
u 1
a
3
=
0
u
a
6
=
1
u + 1
a
9
=
u
u
a
1
=
0
u
a
2
=
0
u
a
5
=
1
0
a
8
=
0
u
a
8
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 4
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
u
2
c
3
, c
5
, c
8
c
10
u
2
+ u + 1
c
4
, c
6
, c
9
c
11
u
2
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
y
2
c
3
, c
4
, c
5
c
6
, c
8
, c
9
c
10
, c
11
y
2
+ y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
4.05977I 0. 6.92820I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
4.05977I 0. + 6.92820I
29
VII. I
u
7
= hb u, a, u
2
+ u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
0
u
a
11
=
1
u + 1
a
3
=
u
u
a
6
=
0
u
a
9
=
1
u + 1
a
1
=
1
u + 1
a
2
=
1
2u + 2
a
5
=
u
3u 1
a
8
=
u
3u 2
a
8
=
u
3u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
10
u
2
u 1
c
2
u
2
+ 3u + 1
c
6
, c
11
u
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
5
, c
7
, c
8
c
9
, c
10
y
2
3y + 1
c
2
y
2
7y + 1
c
6
, c
11
y
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0
b = 0.618034
0.986960 10.0000
u = 1.61803
a = 0
b = 1.61803
8.88264 10.0000
33
VIII. I
u
8
= hu
3
2u
2
+ b 1, u
3
u
2
+ a 2u 2, u
4
u
3
2u
2
2u 1i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
4
=
u
3
+ u
2
+ 2u + 2
u
3
+ 2u
2
+ 1
a
11
=
1
u
2
a
3
=
2u
3
+ 3u
2
+ 2u + 3
u
3
+ 2u
2
+ 1
a
6
=
u
3
+ u
2
+ 2u + 2
u
3
+ 2u
2
+ u + 1
a
9
=
u
3
+ 2u
2
+ 2
u
3
+ 2u
2
+ u + 2
a
1
=
u
3
2u
2
1
u
3
u
2
u 2
a
2
=
u
3
2u
2
1
2u
3
2u
2
2u 3
a
5
=
2u
3
+ 3u
2
+ 3u + 3
u
3
+ 3u
2
+ u + 2
a
8
=
2u
3
3u
2
2u 3
3u
3
4u
2
2u 3
a
8
=
2u
3
3u
2
2u 3
3u
3
4u
2
2u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
9
(u
2
+ u 1)
2
c
2
(u
2
+ 3u + 1)
2
c
3
, c
5
, c
8
c
10
u
4
+ u
3
2u
2
+ 2u 1
c
6
, c
11
(u 1)
4
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
9
(y
2
3y + 1)
2
c
2
(y
2
7y + 1)
2
c
3
, c
5
, c
8
c
10
y
4
5y
3
2y
2
+ 1
c
6
, c
11
(y 1)
4
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.309017 + 0.722871I
a = 0.500000 + 1.169630I
b = 0.309017 0.722871I
2.30291 2.00000
u = 0.309017 0.722871I
a = 0.500000 1.169630I
b = 0.309017 + 0.722871I
2.30291 2.00000
u = 0.698478
a = 1.43168
b = 2.31651
5.59278 2.00000
u = 2.31651
a = 0.431683
b = 0.698478
5.59278 2.00000
37
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
2
(u
2
u 1)(u
2
+ u 1)
14
(u
6
4u
5
+ 6u
4
5u
3
+ 5u
2
6u + 4)
2
· (u
13
6u
12
+ ··· 20u + 8)
· (u
16
9u
14
+ 35u
12
82u
10
+ 133u
8
152u
6
+ 118u
4
56u
2
+ 13)
c
2
u
2
(u
2
+ 3u + 1)
15
(u
6
+ 4u
5
+ 6u
4
+ 5u
3
+ 13u
2
4u + 16)
2
· (u
8
+ 9u
7
+ 35u
6
+ 82u
5
+ 133u
4
+ 152u
3
+ 118u
2
+ 56u + 13)
2
· (u
13
+ 10u
12
+ ··· + 208u + 64)
c
3
, c
5
, c
8
c
10
(u
2
u 1)(u
2
+ u + 1)(u
4
+ u
3
2u
2
+ 2u 1)
· (u
8
u
7
2u
6
+ 3u
5
+ 10u
4
+ 7u
3
3u
2
+ 4)
· (u
12
u
10
+ 4u
8
+ 8u
7
+ 14u
6
15u
5
33u
4
u
3
+ 26u
2
3u + 1)
· (u
13
+ u
12
+ ··· + u + 1)(u
16
u
15
+ ··· + u + 1)
· (u
16
+ u
15
+ ··· 14u + 61)
c
4
, c
9
(u
2
u 1)(u
2
u + 1)(u
2
+ u 1)
2
(u
6
+ u
5
+ ··· + 4u
2
+ 1)
2
· (u
8
3u
7
+ 8u
6
3u
5
+ 8u
4
3u
3
+ 7u
2
+ 16)
· (u
8
+ u
7
u
5
3u
4
+ u
3
+ 4u
2
+ u + 1)
2
· (u
8
+ u
7
+ 2u
6
5u
5
2u
4
+ 11u
3
+ 5u
2
+ 2u + 4)
2
· (u
13
2u
12
+ ··· u + 4)
c
6
, c
11
u
2
(u 1)
4
(u
2
u + 1)
5
(u
4
u
3
+ 2u + 1)
4
· (u
12
+ 4u
11
+ ··· + 66u + 11)(u
13
+ 5u
12
+ ··· + 11u 1)
· (u
16
9u
15
+ ··· 6u + 1)
38
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
2
(y
2
3y + 1)
15
(y
6
4y
5
+ 6y
4
5y
3
+ 13y
2
+ 4y + 16)
2
· (y
8
9y
7
+ 35y
6
82y
5
+ 133y
4
152y
3
+ 118y
2
56y + 13)
2
· (y
13
10y
12
+ ··· + 208y 64)
c
2
y
2
(y
2
7y + 1)
15
(y
6
4y
5
+ 22y
4
+ 195y
3
+ 401y
2
+ 400y + 256)
2
· (y
8
11y
7
+ 15y
6
+ 86y
5
+ 39y
4
+ 10y
3
+ 358y
2
68y + 169)
2
· (y
13
14y
12
+ ··· 14080y 4096)
c
3
, c
5
, c
8
c
10
(y
2
3y + 1)(y
2
+ y + 1)(y
4
5y
3
2y
2
+ 1)
· (y
8
5y
7
+ 30y
6
41y
5
+ 78y
4
125y
3
+ 89y
2
24y + 16)
· (y
12
2y
11
+ ··· + 43y + 1)(y
13
13y
12
+ ··· + 21y 1)
· (y
16
+ 9y
15
+ ··· + y + 1)(y
16
+ 13y
15
+ ··· + 5172y + 3721)
c
4
, c
9
((y
2
3y + 1)
3
)(y
2
+ y + 1)(y
6
+ 5y
5
+ ··· + 8y + 1)
2
· (y
8
y
7
4y
6
+ 5y
5
+ 11y
4
23y
3
+ 8y
2
+ 7y + 1)
2
· (y
8
+ 3y
7
+ 10y
6
45y
5
+ 138y
4
105y
3
35y
2
+ 36y + 16)
2
· (y
8
+ 7y
7
+ 62y
6
+ 115y
5
+ 190y
4
+ 359y
3
+ 305y
2
+ 224y + 256)
· (y
13
+ 16y
11
+ ··· + 65y 16)
c
6
, c
11
y
2
(y 1)
4
(y
2
+ y + 1)
5
(y
4
y
3
+ 6y
2
4y + 1)
4
· (y
12
4y
11
+ ··· 484y + 121)(y
13
5y
12
+ ··· + 157y 1)
· (y
16
9y
15
+ ··· 2y + 1)
39