11n
151
(K11n
151
)
A knot diagram
1
Linearized knot diagam
4 8 1 2 9 10 3 11 1 8 6
Solving Sequence
8,10
11
3,9
2 7 6 1 5 4
c
10
c
8
c
2
c
7
c
6
c
11
c
5
c
4
c
1
, c
3
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
9
+ 4u
8
5u
7
2u
6
+ 9u
5
4u
4
4u
3
+ 4u
2
+ b u,
u
9
4u
8
+ 4u
7
+ 6u
6
13u
5
+ 12u
3
2u
2
+ a 5u,
u
11
5u
10
+ 8u
9
+ 3u
8
22u
7
+ 14u
6
+ 18u
5
19u
4
7u
3
+ 7u
2
+ 2u + 1i
I
u
2
= h−u
4
+ u
3
+ u
2
+ b 1, a, u
5
u
4
2u
3
+ u
2
+ u + 1i
I
u
3
= ha
4
+ 2a
2
+ b + 2, a
5
+ a
4
+ 2a
3
+ a
2
+ a + 1, u + 1i
I
u
4
= h−u
7
+ u
6
u
5
2u
4
+ u
3
+ 4b + 5u + 1,
9u
9
+ 17u
8
44u
7
+ 5u
6
38u
5
78u
4
4u
3
207u
2
+ 16a + 7u 113,
u
10
2u
9
+ 5u
8
u
7
+ 3u
6
+ 8u
5
2u
4
+ 19u
3
6u
2
+ 8u 1i
* 4 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
9
+4u
8
+· · · + b u, u
9
4u
8
+· · · + a 5u, u
11
5u
10
+· · · + 2u + 1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
u
9
+ 4u
8
4u
7
6u
6
+ 13u
5
12u
3
+ 2u
2
+ 5u
u
9
4u
8
+ 5u
7
+ 2u
6
9u
5
+ 4u
4
+ 4u
3
4u
2
+ u
a
9
=
u
u
3
+ u
a
2
=
u
9
+ 4u
8
4u
7
6u
6
+ 13u
5
12u
3
+ 2u
2
+ 5u
u
10
+ 5u
9
7u
8
4u
7
+ 16u
6
3u
5
13u
4
+ 2u
3
+ 3u
2
+ 3u + 1
a
7
=
u
2
1
u
4
2u
3
+ 2u
a
6
=
u
4
2u
3
+ u
2
+ 2u 1
u
4
2u
3
+ 2u
a
1
=
u
10
+ 4u
9
5u
8
4u
7
+ 14u
6
6u
5
11u
4
+ 8u
3
+ 3u
2
2u + 1
u
10
+ 4u
9
4u
8
6u
7
+ 13u
6
12u
4
+ 2u
3
+ 5u
2
a
5
=
u
8
2u
7
u
6
+ 6u
5
u
4
6u
3
+ 2u
2
+ 2u 1
u
10
2u
9
2u
8
+ 8u
7
u
6
10u
5
+ 4u
4
+ 2u
3
u
2
+ 2u
a
4
=
u
10
4u
9
+ 5u
8
+ 4u
7
14u
6
+ 6u
5
+ 11u
4
8u
3
3u
2
+ 2u 1
u
10
3u
9
u
8
+ 14u
7
12u
6
15u
5
+ 21u
4
+ 6u
3
11u
2
u 1
a
4
=
u
10
4u
9
+ 5u
8
+ 4u
7
14u
6
+ 6u
5
+ 11u
4
8u
3
3u
2
+ 2u 1
u
10
3u
9
u
8
+ 14u
7
12u
6
15u
5
+ 21u
4
+ 6u
3
11u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
10
16u
9
+ 20u
8
+ 8u
7
24u
6
16u
5
+ 28u
4
+ 32u
3
28u
2
24u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
10
u
11
5u
10
+ ··· + 2u + 1
c
2
, c
7
, c
9
u
11
+ u
10
+ ··· + 2u + 1
c
5
u
11
u
10
+ 3u
8
+ 12u
7
+ 10u
6
6u
5
33u
4
31u
3
33u
2
10u 11
c
6
u
11
+ u
10
+ ··· 33u
2
27
c
11
u
11
u
10
+ u
8
+ 8u
7
12u
6
+ 8u
5
+ 3u
4
+ 3u
3
3u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
10
y
11
9y
10
+ ··· 10y 1
c
2
, c
7
, c
9
y
11
9y
10
+ ··· 2y 1
c
5
y
11
y
10
+ ··· 626y 121
c
6
y
11
+ 15y
10
+ ··· 1782y 729
c
11
y
11
y
10
+ ··· + 6y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.07566
a = 0.382088
b = 6.69648
3.78211 32.5960
u = 0.832306 + 0.202239I
a = 0.362795 + 0.658644I
b = 1.76349 0.21001I
2.76312 + 1.08944I 13.75530 + 1.30535I
u = 0.832306 0.202239I
a = 0.362795 0.658644I
b = 1.76349 + 0.21001I
2.76312 1.08944I 13.75530 1.30535I
u = 1.263210 + 0.139301I
a = 0.158505 0.711489I
b = 0.009586 + 0.293616I
8.16883 4.71969I 15.8344 + 7.6612I
u = 1.263210 0.139301I
a = 0.158505 + 0.711489I
b = 0.009586 0.293616I
8.16883 + 4.71969I 15.8344 7.6612I
u = 1.31469 + 0.95832I
a = 0.606321 + 1.088860I
b = 0.10260 1.75202I
7.84139 5.06071I 4.48302 + 2.40182I
u = 1.31469 0.95832I
a = 0.606321 1.088860I
b = 0.10260 + 1.75202I
7.84139 + 5.06071I 4.48302 2.40182I
u = 0.113634 + 0.293281I
a = 1.09164 + 1.49222I
b = 0.322788 + 0.550650I
0.003691 + 1.266700I 0.27668 5.30833I
u = 0.113634 0.293281I
a = 1.09164 1.49222I
b = 0.322788 0.550650I
0.003691 1.266700I 0.27668 + 5.30833I
u = 1.40586 + 1.00997I
a = 0.593293 1.135200I
b = 0.38195 + 1.94651I
7.4453 12.4339I 4.94880 + 5.95992I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40586 1.00997I
a = 0.593293 + 1.135200I
b = 0.38195 1.94651I
7.4453 + 12.4339I 4.94880 5.95992I
6
II. I
u
2
= h−u
4
+ u
3
+ u
2
+ b 1, a, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
0
u
4
u
3
u
2
+ 1
a
9
=
u
u
3
+ u
a
2
=
0
u
4
u
3
u
2
+ 1
a
7
=
0
u
a
6
=
u
u
a
1
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
5
=
u
4
u
2
1
u
4
2u
2
a
4
=
u
4
u
2
1
2u
4
u
3
3u
2
+ 1
a
4
=
u
4
u
2
1
2u
4
u
3
3u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
+ 7u
3
+ 2u
2
6u 7
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
7
u
5
c
3
, c
4
(u + 1)
5
c
5
, c
9
u
5
u
4
+ 2u
3
u
2
+ u 1
c
6
, c
8
u
5
+ u
4
2u
3
u
2
+ u 1
c
10
u
5
u
4
2u
3
+ u
2
+ u + 1
c
11
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
5
c
2
, c
7
y
5
c
5
, c
9
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
6
, c
8
, c
10
y
5
5y
4
+ 8y
3
3y
2
y 1
c
11
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0
b = 3.52181
4.04602 15.9650
u = 0.309916 + 0.549911I
a = 0
b = 0.881366 + 0.489365I
1.97403 + 1.53058I 3.57269 4.45807I
u = 0.309916 0.549911I
a = 0
b = 0.881366 0.489365I
1.97403 1.53058I 3.57269 + 4.45807I
u = 1.41878 + 0.21917I
a = 0
b = 0.142272 + 0.509071I
7.51750 4.40083I 3.44484 + 1.78781I
u = 1.41878 0.21917I
a = 0
b = 0.142272 0.509071I
7.51750 + 4.40083I 3.44484 1.78781I
10
III. I
u
3
= ha
4
+ 2a
2
+ b + 2, a
5
+ a
4
+ 2a
3
+ a
2
+ a + 1, u + 1i
(i) Arc colorings
a
8
=
0
1
a
10
=
1
0
a
11
=
1
1
a
3
=
a
a
4
2a
2
2
a
9
=
1
0
a
2
=
a
a
4
2a
2
+ a 2
a
7
=
a
2
a
4
+ a
2
a
a
6
=
a
4
+ 2a
2
a
a
4
+ a
2
a
a
1
=
a
4
0
a
5
=
a
2
a
4
+ a
2
a
a
4
=
a
4
a
4
2a
2
2
a
4
=
a
4
a
4
2a
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
4
3a
3
11a
2
2a 11
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
+ u
4
2u
3
u
2
+ u 1
c
2
u
5
u
4
+ 2u
3
u
2
+ u 1
c
3
, c
4
u
5
u
4
2u
3
+ u
2
+ u + 1
c
5
, c
6
u
5
u
4
u
3
+ 4u
2
3u + 1
c
7
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
8
(u 1)
5
c
9
u
5
c
10
(u + 1)
5
c
11
u
5
3u
4
+ 4u
3
u
2
u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
y
5
5y
4
+ 8y
3
3y
2
y 1
c
2
, c
7
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
5
, c
6
y
5
3y
4
+ 3y
3
8y
2
+ y 1
c
8
, c
10
(y 1)
5
c
9
y
5
c
11
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.339110 + 0.822375I
b = 0.881366 0.489365I
1.97403 + 1.53058I 3.57269 4.45807I
u = 1.00000
a = 0.339110 0.822375I
b = 0.881366 + 0.489365I
1.97403 1.53058I 3.57269 + 4.45807I
u = 1.00000
a = 0.766826
b = 3.52181
4.04602 15.9650
u = 1.00000
a = 0. 455697 + 1.200150I
b = 0.142272 0.509071I
7.51750 4.40083I 3.44484 + 1.78781I
u = 1.00000
a = 0. 455697 1.200150I
b = 0.142272 + 0.509071I
7.51750 + 4.40083I 3.44484 1.78781I
14
IV. I
u
4
= h−u
7
+ u
6
u
5
2u
4
+ u
3
+ 4b + 5u + 1, 9u
9
+ 17u
8
+ · · · +
16a 113, u
10
2u
9
+ · · · + 8u 1i
(i) Arc colorings
a
8
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
3
=
0.562500u
9
1.06250u
8
+ ··· 0.437500u + 7.06250
1
4
u
7
1
4
u
6
+ ···
5
4
u
1
4
a
9
=
u
u
3
+ u
a
2
=
0.562500u
9
1.06250u
8
+ ··· 0.437500u + 7.06250
0.0625000u
9
0.0625000u
8
+ ··· 1.18750u 0.187500
a
7
=
3
2
u
9
+
19
8
u
8
+ ··· + u
53
8
0.312500u
9
0.437500u
8
+ ··· + 0.0625000u + 0.437500
a
6
=
1.18750u
9
+ 1.93750u
8
+ ··· + 1.06250u 6.18750
0.312500u
9
0.437500u
8
+ ··· + 0.0625000u + 0.437500
a
1
=
1
4
u
9
+
1
2
u
8
+ ··· +
3
2
u
13
4
1
4
u
8
1
2
u
7
+ ··· + u +
1
4
a
5
=
u
9
+
11
8
u
8
+ ···
5
2
u
45
8
0.437500u
9
+ 0.312500u
8
+ ··· + 5.31250u 0.312500
a
4
=
1
4
u
9
1
2
u
8
+ ···
3
2
u +
13
4
1
4
u
8
+
1
4
u
7
+ ··· +
5
4
u
2
+
1
4
u
a
4
=
1
4
u
9
1
2
u
8
+ ···
3
2
u +
13
4
1
4
u
8
+
1
4
u
7
+ ··· +
5
4
u
2
+
1
4
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u
9
+
7
8
u
8
9
4
u
7
+ 2u
6
3
8
u
5
23
8
u
4
+
33
8
u
3
35
8
u
2
+
31
4
u
37
8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
10
u
10
2u
9
+ 5u
8
u
7
+ 3u
6
+ 8u
5
2u
4
+ 19u
3
6u
2
+ 8u 1
c
2
, c
7
, c
9
u
10
+ u
9
+ ··· + 160u + 32
c
5
u
10
10u
8
+ 43u
6
+ 17u
5
35u
4
+ 46u
3
+ 64u
2
38u 29
c
6
u
10
+ 2u
9
+ ··· 100u 43
c
11
(u
5
u
4
+ u
2
+ u 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
10
y
10
+ 6y
9
+ ··· 52y + 1
c
2
, c
7
, c
9
y
10
21y
9
+ ··· 9728y + 1024
c
5
y
10
20y
9
+ ··· 5156y + 841
c
6
y
10
+ 20y
9
+ ··· 13440y + 1849
c
11
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.394402 + 1 .113210I
a = 0. 721708 0.484512I
b = 0.233677 + 0.885557I
0.17487 + 2.21397I 2.88087 4.04855I
u = 0.394402 1.113210I
a = 0. 721708 + 0.484512I
b = 0.233677 0.885557I
0.17487 2.21397I 2.88087 + 4.04855I
u = 0.124008 + 0.699342I
a = 1.91026 + 1.28243I
b = 0.233677 0.885557I
0.17487 2.21397I 2.88087 + 4.04855I
u = 0.124008 0.699342I
a = 1.91026 1.28243I
b = 0.233677 + 0.885557I
0.17487 + 2.21397I 2.88087 4.04855I
u = 1.30598
a = 0.276456
b = 0.416284
2.52712 3.66490
u = 0.93349 + 1.31744I
a = 0.80555 + 1.36977I
b = 0.05818 1.69128I
9.31336 3.33174I 3.28666 + 2.53508I
u = 0.93349 1.31744I
a = 0.80555 1.36977I
b = 0.05818 + 1.69128I
9.31336 + 3.33174I 3.28666 2.53508I
u = 0.92355 + 1.51424I
a = 0.638018 1.084890I
b = 0.05818 + 1.69128I
9.31336 + 3.33174I 3.28666 2.53508I
u = 0.92355 1.51424I
a = 0.638018 + 1.084890I
b = 0.05818 1.69128I
9.31336 3.33174I 3.28666 + 2.53508I
u = 0.132691
a = 7.23443
b = 0.416284
2.52712 3.66490
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u 1)
5
(u
5
+ u
4
2u
3
u
2
+ u 1)
· (u
10
2u
9
+ 5u
8
u
7
+ 3u
6
+ 8u
5
2u
4
+ 19u
3
6u
2
+ 8u 1)
· (u
11
5u
10
+ ··· + 2u + 1)
c
2
, c
9
u
5
(u
5
u
4
+ ··· + u 1)(u
10
+ u
9
+ ··· + 160u + 32)
· (u
11
+ u
10
+ ··· + 2u + 1)
c
3
, c
4
, c
10
(u + 1)
5
(u
5
u
4
2u
3
+ u
2
+ u + 1)
· (u
10
2u
9
+ 5u
8
u
7
+ 3u
6
+ 8u
5
2u
4
+ 19u
3
6u
2
+ 8u 1)
· (u
11
5u
10
+ ··· + 2u + 1)
c
5
(u
5
u
4
u
3
+ 4u
2
3u + 1)(u
5
u
4
+ 2u
3
u
2
+ u 1)
· (u
10
10u
8
+ 43u
6
+ 17u
5
35u
4
+ 46u
3
+ 64u
2
38u 29)
· (u
11
u
10
+ 3u
8
+ 12u
7
+ 10u
6
6u
5
33u
4
31u
3
33u
2
10u 11)
c
6
(u
5
u
4
u
3
+ 4u
2
3u + 1)(u
5
+ u
4
2u
3
u
2
+ u 1)
· (u
10
+ 2u
9
+ ··· 100u 43)(u
11
+ u
10
+ ··· 33u
2
27)
c
7
u
5
(u
5
+ u
4
+ ··· + u + 1)(u
10
+ u
9
+ ··· + 160u + 32)
· (u
11
+ u
10
+ ··· + 2u + 1)
c
11
(u
5
3u
4
+ 4u
3
u
2
u + 1)(u
5
u
4
+ u
2
+ u 1)
2
· (u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
11
u
10
+ u
8
+ 8u
7
12u
6
+ 8u
5
+ 3u
4
+ 3u
3
3u
2
+ 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
10
((y 1)
5
)(y
5
5y
4
+ ··· y 1)(y
10
+ 6y
9
+ ··· 52y + 1)
· (y
11
9y
10
+ ··· 10y 1)
c
2
, c
7
, c
9
y
5
(y
5
+ 3y
4
+ ··· y 1)(y
10
21y
9
+ ··· 9728y + 1024)
· (y
11
9y
10
+ ··· 2y 1)
c
5
(y
5
3y
4
+ 3y
3
8y
2
+ y 1)(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
· (y
10
20y
9
+ ··· 5156y + 841)(y
11
y
10
+ ··· 626y 121)
c
6
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
5
3y
4
+ 3y
3
8y
2
+ y 1)
· (y
10
+ 20y
9
+ ··· 13440y + 1849)
· (y
11
+ 15y
10
+ ··· 1782y 729)
c
11
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
11
y
10
+ ··· + 6y 1)
20