11n
153
(K11n
153
)
A knot diagram
1
Linearized knot diagam
10 8 1 2 9 3 1 5 6 4 8
Solving Sequence
1,4 3,8
2 5 7 6 11 10 9
c
3
c
2
c
4
c
7
c
6
c
11
c
10
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−969784110565u
17
+ 7522067922888u
16
+ ··· + 3213286025447b 9008416143977,
9008416143977u
17
73317472411273u
16
+ ··· + 25706288203576a 26276930799793,
u
18
9u
17
+ ··· 33u 8i
I
u
2
= h−u
2
+ b u, a u 1, u
5
+ 3u
4
+ 3u
3
+ 2u
2
+ u + 1i
I
u
3
= h−u
8
7u
7
17u
6
12u
5
+ 13u
4
+ 16u
3
au 10u
2
+ b 10u + 5, 15u
8
a + 8u
8
+ ··· 75a 70,
u
9
+ 7u
8
+ 16u
7
+ 7u
6
19u
5
11u
4
+ 20u
3
+ 6u
2
11u + 3i
I
u
4
= hu
2
+ b + 2u + 1, u
2
+ a 2u, u
3
+ 3u
2
+ 2u + 1i
* 4 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9.70 × 10
11
u
17
+ 7.52 × 10
12
u
16
+ · · · + 3.21 × 10
12
b 9.01 ×
10
12
, 9.01 × 10
12
u
17
7.33 × 10
13
u
16
+ · · · + 2.57 × 10
13
a 2.63 ×
10
13
, u
18
9u
17
+ · · · 33u 8i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
0.350436u
17
+ 2.85212u
16
+ ··· 14.9807u + 1.02220
0.301804u
17
2.34093u
16
+ ··· + 10.5422u + 2.80349
a
2
=
0.0586285u
17
0.559036u
16
+ ··· + 4.76685u 1.68018
0.0313795u
17
0.210283u
16
+ ··· + 0.745441u 0.469028
a
5
=
0.0993811u
17
0.841718u
16
+ ··· + 4.58790u + 0.0398829
0.0313795u
17
0.210283u
16
+ ··· 0.254559u 0.469028
a
7
=
0.350436u
17
+ 2.85212u
16
+ ··· 14.9807u + 1.02220
0.677118u
17
5.29868u
16
+ ··· + 23.3052u + 5.21793
a
6
=
0.0486318u
17
+ 0.511195u
16
+ ··· 4.43851u + 3.82569
0.257046u
17
1.94618u
16
+ ··· + 8.50546u + 2.21542
a
11
=
0.291572u
17
2.39120u
16
+ ··· + 14.0411u 0.347607
0.232943u
17
+ 1.83217u
16
+ ··· 8.27426u 2.33257
a
10
=
0.0586285u
17
0.559036u
16
+ ··· + 5.76685u 2.68018
0.232943u
17
+ 1.83217u
16
+ ··· 8.27426u 2.33257
a
9
=
0.00591672u
17
+ 0.133324u
16
+ ··· 1.44739u + 2.47523
0.0460630u
17
+ 0.308887u
16
+ ··· + 0.724360u + 0.154459
a
9
=
0.00591672u
17
+ 0.133324u
16
+ ··· 1.44739u + 2.47523
0.0460630u
17
+ 0.308887u
16
+ ··· + 0.724360u + 0.154459
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
3008625095462
3213286025447
u
17
22676683370184
3213286025447
u
16
+ ··· +
74739485745112
3213286025447
u +
16280782342958
3213286025447
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
18
+ 2u
17
+ ··· 2u + 1
c
2
u
18
2u
16
+ ··· 5u 1
c
3
u
18
9u
17
+ ··· 33u 8
c
5
, c
8
, c
9
u
18
6u
17
+ ··· + 3u + 2
c
6
, c
7
, c
11
u
18
13u
16
+ ··· u + 1
c
10
u
18
+ 17u
17
+ ··· + 4352u + 512
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
+ 2y
17
+ ··· 2y + 1
c
2
y
18
4y
17
+ ··· 35y + 1
c
3
y
18
13y
17
+ ··· 2017y + 64
c
5
, c
8
, c
9
y
18
18y
17
+ ··· + 35y + 4
c
6
, c
7
, c
11
y
18
26y
17
+ ··· 7y + 1
c
10
y
18
y
17
+ ··· + 458752y + 262144
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.843032 + 0.524058I
a = 0.586941 + 1.246720I
b = 1.148160 0.743433I
2.18663 2.73072I 12.5447 + 6.6202I
u = 0.843032 0.524058I
a = 0.586941 1.246720I
b = 1.148160 + 0.743433I
2.18663 + 2.73072I 12.5447 6.6202I
u = 1.09266
a = 1.66916
b = 1.82383
2.25932 7.45690
u = 0.926749 + 0.681554I
a = 0.358863 0.335448I
b = 0.103949 0.555460I
3.08255 + 2.45502I 4.56614 2.39715I
u = 0.926749 0.681554I
a = 0.358863 + 0.335448I
b = 0.103949 + 0.555460I
3.08255 2.45502I 4.56614 + 2.39715I
u = 0.439225 + 1.123520I
a = 0.064923 + 0.354238I
b = 0.369476 + 0.228533I
0.29930 + 2.83434I 6.26246 4.02020I
u = 0.439225 1.123520I
a = 0.064923 0.354238I
b = 0.369476 0.228533I
0.29930 2.83434I 6.26246 + 4.02020I
u = 0.305459 + 0.432561I
a = 0.854284 0.273373I
b = 0.379199 + 0.286025I
0.589102 + 1.103260I 3.61302 5.14507I
u = 0.305459 0.432561I
a = 0.854284 + 0.273373I
b = 0.379199 0.286025I
0.589102 1.103260I 3.61302 + 5.14507I
u = 1.56461 + 0.17007I
a = 1.212670 + 0.097343I
b = 1.88079 0.35855I
6.68818 3.40005I 2.59654 + 3.50270I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56461 0.17007I
a = 1.212670 0.097343I
b = 1.88079 + 0.35855I
6.68818 + 3.40005I 2.59654 3.50270I
u = 0.32355 + 1.54849I
a = 0.154189 0.448176I
b = 0.644108 0.383768I
5.90785 + 4.79162I 2.11811 3.69242I
u = 0.32355 1.54849I
a = 0.154189 + 0.448176I
b = 0.644108 + 0.383768I
5.90785 4.79162I 2.11811 + 3.69242I
u = 1.77246 + 0.37808I
a = 1.060540 + 0.004179I
b = 1.88134 + 0.39356I
7.47923 8.86125I 3.00235 + 6.30100I
u = 1.77246 0.37808I
a = 1.060540 0.004179I
b = 1.88134 0.39356I
7.47923 + 8.86125I 3.00235 6.30100I
u = 0.177652
a = 4.24705
b = 0.754498
3.37072 0.911940
u = 1.85738 + 0.59535I
a = 0.989524 0.084101I
b = 1.88799 0.43291I
1.17978 13.07450I 0.56098 + 6.39967I
u = 1.85738 0.59535I
a = 0.989524 + 0.084101I
b = 1.88799 + 0.43291I
1.17978 + 13.07450I 0.56098 6.39967I
6
II. I
u
2
= h−u
2
+ b u, a u 1, u
5
+ 3u
4
+ 3u
3
+ 2u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
u + 1
u
2
+ u
a
2
=
u
4
3u
3
3u
2
u + 1
u + 1
a
5
=
u
4
+ 3u
3
+ 2u
2
u 1
u
2
2u 1
a
7
=
u + 1
u
3
+ u
a
6
=
u
2
+ 2u + 1
u
4
2u
3
+ u
a
11
=
u
3
+ 2u
2
+ u
u
4
+ 2u
3
+ u
2
+ u
a
10
=
u
4
+ 3u
3
+ 3u
2
+ 2u
u
4
+ 2u
3
+ u
2
+ u
a
9
=
u
4
+ 2u
3
u 2
u
3
2u
2
2u 2
a
9
=
u
4
+ 2u
3
u 2
u
3
2u
2
2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
4
19u
3
16u
2
8u 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
5
2u
4
+ u
3
+ u
2
u + 1
c
2
u
5
+ 3u
4
+ 4u
3
+ 3u
2
+ u + 1
c
3
u
5
+ 3u
4
+ 3u
3
+ 2u
2
+ u + 1
c
5
u
5
u
4
3u
3
+ 2u
2
+ 3u 1
c
6
, c
11
u
5
u
3
+ 2u
2
2u + 1
c
7
u
5
u
3
2u
2
2u 1
c
8
, c
9
u
5
+ u
4
3u
3
2u
2
+ 3u + 1
c
10
u
5
u
4
+ u
3
+ u
2
2u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
5
2y
4
+ 3y
3
+ y
2
y 1
c
2
y
5
y
4
7y
2
5y 1
c
3
y
5
3y
4
y
3
4y
2
3y 1
c
5
, c
8
, c
9
y
5
7y
4
+ 19y
3
24y
2
+ 13y 1
c
6
, c
7
, c
11
y
5
2y
4
3y
3
1
c
10
y
5
+ y
4
y
3
3y
2
+ 2y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.761946 + 0.720973I
a = 0.238054 + 0.720973I
b = 0.701186 0.377712I
1.60363 + 2.70217I 2.62337 3.99219I
u = 0.761946 0.720973I
a = 0.238054 0.720973I
b = 0.701186 + 0.377712I
1.60363 2.70217I 2.62337 + 3.99219I
u = 0.216341 + 0.655213I
a = 1.216340 + 0.655213I
b = 0.166160 + 0.938713I
8.18698 + 5.82350I 7.02930 4.66310I
u = 0.216341 0.655213I
a = 1.216340 0.655213I
b = 0.166160 0.938713I
8.18698 5.82350I 7.02930 + 4.66310I
u = 1.90879
a = 0.908791
b = 1.73469
6.42175 5.81190
10
III.
I
u
3
= h−u
8
7u
7
+· · ·+b+5, 15u
8
a+8u
8
+· · ·75a70, u
9
+7u
8
+· · ·11u+3i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
a
u
8
+ 7u
7
+ 17u
6
+ 12u
5
13u
4
16u
3
+ au + 10u
2
+ 10u 5
a
2
=
u
7
a +
1
3
u
8
+ ··· 3a
8
3
u
7
a 5u
6
a 6u
5
a + 5u
4
a + 10u
3
a 4u
2
a 6au + 3a + u + 1
a
5
=
1
3
u
8
7
3
u
7
+ ··· a +
8
3
u
8
a + 5u
7
a + ··· 3u + 1
a
7
=
a
u
8
+ 7u
7
+ 17u
6
+ 12u
5
13u
4
u
2
a 16u
3
+ au + 10u
2
+ 10u 5
a
6
=
u
8
+ 7u
7
+ 17u
6
+ 12u
5
13u
4
16u
3
+ au + 10u
2
+ a + 10u 5
2u
7
+ 11u
6
+ 17u
5
u
3
a 3u
4
u
2
a 20u
3
+ au + 4u
2
+ 13u 5
a
11
=
u
8
a
1
3
u
8
+ ··· + 5a +
8
3
1
a
10
=
u
8
a
1
3
u
8
+ ··· + 5a +
11
3
1
a
9
=
1
3
u
8
7
3
u
7
+ ··· + 3a +
5
3
u
5
a + 3u
4
a u
5
+ u
3
a 3u
4
2u
2
a + au + 5u
2
+ u 1
a
9
=
1
3
u
8
7
3
u
7
+ ··· + 3a +
5
3
u
5
a + 3u
4
a u
5
+ u
3
a 3u
4
2u
2
a + au + 5u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
24u
7
44u
6
8u
5
+ 40u
4
4u
3
36u
2
+ 8u 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
18
+ 7u
17
+ ··· + 18u + 1
c
2
u
18
u
17
+ ··· 80u 47
c
3
(u
9
+ 7u
8
+ 16u
7
+ 7u
6
19u
5
11u
4
+ 20u
3
+ 6u
2
11u + 3)
2
c
5
, c
8
, c
9
(u
9
+ u
8
4u
7
3u
6
+ 5u
5
+ u
4
2u
3
+ 2u
2
+ u + 1)
2
c
6
, c
7
, c
11
u
18
u
17
+ ··· 70u 19
c
10
(u 1)
18
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
5y
17
+ ··· 156y + 1
c
2
y
18
9y
17
+ ··· 34788y + 2209
c
3
(y
9
17y
8
+ ··· + 85y 9)
2
c
5
, c
8
, c
9
(y
9
9y
8
+ 32y
7
55y
6
+ 45y
5
19y
4
+ 16y
3
10y
2
3y 1)
2
c
6
, c
7
, c
11
y
18
21y
17
+ ··· 3456y + 361
c
10
(y 1)
18
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.654621 + 0.397677I
a = 0.440463 0.049244I
b = 0.42962 1.49091I
6.88147 + 5.50049I 0.51063 2.97298I
u = 0.654621 + 0.397677I
a = 0.53124 + 1.95480I
b = 0.307920 0.142926I
6.88147 + 5.50049I 0.51063 2.97298I
u = 0.654621 0.397677I
a = 0.440463 + 0.049244I
b = 0.42962 + 1.49091I
6.88147 5.50049I 0.51063 + 2.97298I
u = 0.654621 0.397677I
a = 0.53124 1.95480I
b = 0.307920 + 0.142926I
6.88147 5.50049I 0.51063 + 2.97298I
u = 0.429712 + 0.174291I
a = 0.891018 0.617423I
b = 0.331141 + 1.139140I
0.48389 + 2.21388I 3.75885 3.04598I
u = 0.429712 + 0.174291I
a = 0.26158 2.54485I
b = 0.275270 + 0.420610I
0.48389 + 2.21388I 3.75885 3.04598I
u = 0.429712 0.174291I
a = 0.891018 + 0.617423I
b = 0.331141 1.139140I
0.48389 2.21388I 3.75885 + 3.04598I
u = 0.429712 0.174291I
a = 0.26158 + 2.54485I
b = 0.275270 0.420610I
0.48389 2.21388I 3.75885 + 3.04598I
u = 1.56322 + 0.67610I
a = 1.125690 + 0.064721I
b = 1.374430 0.128030I
1.41694 + 3.41073I 2.11762 4.39642I
u = 1.56322 + 0.67610I
a = 0.710837 0.389342I
b = 1.80346 0.65991I
1.41694 + 3.41073I 2.11762 4.39642I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.56322 0.67610I
a = 1.125690 0.064721I
b = 1.374430 + 0.128030I
1.41694 3.41073I 2.11762 + 4.39642I
u = 1.56322 0.67610I
a = 0.710837 + 0.389342I
b = 1.80346 + 0.65991I
1.41694 3.41073I 2.11762 + 4.39642I
u = 1.84670 + 0.28282I
a = 0.993459 + 0.036806I
b = 1.53404 + 0.13840I
6.54435 + 1.10969I 7.44626 6.23947I
u = 1.84670 + 0.28282I
a = 0.800440 + 0.197532I
b = 1.82421 + 0.34894I
6.54435 + 1.10969I 7.44626 6.23947I
u = 1.84670 0.28282I
a = 0.993459 0.036806I
b = 1.53404 0.13840I
6.54435 1.10969I 7.44626 + 6.23947I
u = 1.84670 0.28282I
a = 0.800440 0.197532I
b = 1.82421 0.34894I
6.54435 1.10969I 7.44626 + 6.23947I
u = 2.34883
a = 0.914908
b = 1.55835
3.74294 6.33330
u = 2.34883
a = 0.663457
b = 2.14896
3.74294 6.33330
15
IV. I
u
4
= hu
2
+ b + 2u + 1, u
2
+ a 2u, u
3
+ 3u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
u
2
+ 2u
u
2
2u 1
a
2
=
u
2
2u
u + 1
a
5
=
0
u
2
2u 1
a
7
=
u
2
+ 2u
2u
2
3u 2
a
6
=
1
2u 1
a
11
=
u + 1
u
2
+ 2u
a
10
=
u
2
+ 3u + 1
u
2
+ 2u
a
9
=
u
2
+ 2u
u
2
u 1
a
9
=
u
2
+ 2u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
2
17u 3
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
8
c
9
u
3
u + 1
c
2
u
3
3u
2
+ 2u 1
c
3
u
3
+ 3u
2
+ 2u + 1
c
5
u
3
u 1
c
6
, c
11
u
3
2u
2
+ u 1
c
7
u
3
+ 2u
2
+ u + 1
c
10
u
3
u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
8
, c
9
y
3
2y
2
+ y 1
c
2
, c
3
y
3
5y
2
2y 1
c
6
, c
7
, c
11
y
3
2y
2
3y 1
c
10
y
3
y
2
+ 2y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.337641 + 0.562280I
a = 0.877439 + 0.744862I
b = 0.122561 0.744862I
1.37919 + 2.82812I 3.95284 7.28057I
u = 0.337641 0.562280I
a = 0.877439 0.744862I
b = 0.122561 + 0.744862I
1.37919 2.82812I 3.95284 + 7.28057I
u = 2.32472
a = 0.754878
b = 1.75488
2.75839 4.09430
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
3
u + 1)(u
5
2u
4
+ ··· u + 1)(u
18
+ 2u
17
+ ··· 2u + 1)
· (u
18
+ 7u
17
+ ··· + 18u + 1)
c
2
(u
3
3u
2
+ 2u 1)(u
5
+ 3u
4
+ 4u
3
+ 3u
2
+ u + 1)
· (u
18
2u
16
+ ··· 5u 1)(u
18
u
17
+ ··· 80u 47)
c
3
(u
3
+ 3u
2
+ 2u + 1)(u
5
+ 3u
4
+ 3u
3
+ 2u
2
+ u + 1)
· (u
9
+ 7u
8
+ 16u
7
+ 7u
6
19u
5
11u
4
+ 20u
3
+ 6u
2
11u + 3)
2
· (u
18
9u
17
+ ··· 33u 8)
c
5
(u
3
u 1)(u
5
u
4
3u
3
+ 2u
2
+ 3u 1)
· (u
9
+ u
8
4u
7
3u
6
+ 5u
5
+ u
4
2u
3
+ 2u
2
+ u + 1)
2
· (u
18
6u
17
+ ··· + 3u + 2)
c
6
, c
11
(u
3
2u
2
+ u 1)(u
5
u
3
+ 2u
2
2u + 1)(u
18
13u
16
+ ··· u + 1)
· (u
18
u
17
+ ··· 70u 19)
c
7
(u
3
+ 2u
2
+ u + 1)(u
5
u
3
2u
2
2u 1)(u
18
13u
16
+ ··· u + 1)
· (u
18
u
17
+ ··· 70u 19)
c
8
, c
9
(u
3
u + 1)(u
5
+ u
4
3u
3
2u
2
+ 3u + 1)
· (u
9
+ u
8
4u
7
3u
6
+ 5u
5
+ u
4
2u
3
+ 2u
2
+ u + 1)
2
· (u
18
6u
17
+ ··· + 3u + 2)
c
10
(u 1)
18
(u
3
u
2
+ 1)(u
5
u
4
+ u
3
+ u
2
2u + 1)
· (u
18
+ 17u
17
+ ··· + 4352u + 512)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
2y
2
+ y 1)(y
5
2y
4
+ 3y
3
+ y
2
y 1)
· (y
18
5y
17
+ ··· 156y + 1)(y
18
+ 2y
17
+ ··· 2y + 1)
c
2
(y
3
5y
2
2y 1)(y
5
y
4
7y
2
5y 1)
· (y
18
9y
17
+ ··· 34788y + 2209)(y
18
4y
17
+ ··· 35y + 1)
c
3
(y
3
5y
2
2y 1)(y
5
3y
4
y
3
4y
2
3y 1)
· ((y
9
17y
8
+ ··· + 85y 9)
2
)(y
18
13y
17
+ ··· 2017y + 64)
c
5
, c
8
, c
9
(y
3
2y
2
+ y 1)(y
5
7y
4
+ 19y
3
24y
2
+ 13y 1)
· (y
9
9y
8
+ 32y
7
55y
6
+ 45y
5
19y
4
+ 16y
3
10y
2
3y 1)
2
· (y
18
18y
17
+ ··· + 35y + 4)
c
6
, c
7
, c
11
(y
3
2y
2
3y 1)(y
5
2y
4
3y
3
1)(y
18
26y
17
+ ··· 7y + 1)
· (y
18
21y
17
+ ··· 3456y + 361)
c
10
(y 1)
18
(y
3
y
2
+ 2y 1)(y
5
+ y
4
y
3
3y
2
+ 2y 1)
· (y
18
y
17
+ ··· + 458752y + 262144)
21