9
41
(K9a
29
)
A knot diagram
1
Linearized knot diagam
8 7 9 2 1 3 5 4 6
Solving Sequence
3,9 4,6
7 1 2 5 8
c
3
c
6
c
9
c
2
c
5
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hb + u, a 1, u
4
2u
3
+ 4u
2
3u + 1i
I
u
2
= hb + u, a
2
+ au + 2u
2
+ 2a + 2u + 4, u
3
+ u
2
+ 2u + 1i
I
u
3
= h−3u
5
+ 11u
4
26u
3
+ 35u
2
+ 4b 28u + 12, 3u
5
9u
4
+ 20u
3
23u
2
+ 8a + 14u 4,
u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8i
I
u
4
= h−u
2
b + b
2
2bu 2u, a 1, u
3
+ u
2
+ 2u + 1i
I
u
5
= hb + u, a + 1, u
4
+ 2u
2
u + 1i
I
u
6
= h−au + b u 1, u
2
a + a
2
au + 3u
2
a + u + 5, u
3
+ u
2
+ 2u + 1i
* 6 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb + u, a 1, u
4
2u
3
+ 4u
2
3u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
1
u
a
7
=
u + 1
u
a
1
=
u
u
2
+ u
a
2
=
u
2
u + 1
u
2
a
5
=
u
2
+ 1
u
3
+ u
2
u
a
8
=
u
u
3
+ u
a
8
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
+ 9u
2
18u + 15
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
u
4
3u
3
+ 4u
2
2u + 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
u
4
2u
3
+ 4u
2
3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
y
4
y
3
+ 6y
2
+ 4y + 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
y
4
+ 4y
3
+ 6y
2
y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.363271I
a = 1.00000
b = 0.500000 0.363271I
0.986960 + 0.735995I 7.28115 3.94298I
u = 0.500000 0.363271I
a = 1.00000
b = 0.500000 + 0.363271I
0.986960 0.735995I 7.28115 + 3.94298I
u = 0.50000 + 1.53884I
a = 1.00000
b = 0.50000 1.53884I
10.8566 + 12.0989I 2.78115 6.37988I
u = 0.50000 1.53884I
a = 1.00000
b = 0.50000 + 1.53884I
10.8566 12.0989I 2.78115 + 6.37988I
5
II. I
u
2
= hb + u, a
2
+ au + 2u
2
+ 2a + 2u + 4, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
a
u
a
7
=
a u
u
a
1
=
u
2
a 2au + 2
u
2
a + u
a
2
=
au + u
2
+ 1
u
2
a
5
=
u
2
a 5au 2u
2
2a 4u
2u
2
a 3au 2u
2
a u
a
8
=
u
u
2
u 1
a
8
=
u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4au + 8u
2
+ 4a + 12u + 10
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
3
+ u
2
1)
2
c
2
, c
3
, c
6
c
8
(u
3
+ u
2
+ 2u + 1)
2
c
4
u
6
7u
5
+ 24u
4
47u
3
+ 54u
2
32u + 8
c
5
, c
9
u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
3
y
2
+ 2y 1)
2
c
2
, c
3
, c
6
c
8
(y
3
+ 3y
2
+ 2y 1)
2
c
4
y
6
y
5
+ 26y
4
49y
3
+ 292y
2
160y + 64
c
5
, c
9
y
6
+ 3y
5
+ 2y
4
25y
3
+ 8y
2
+ 48y + 64
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.407481 0.986732I
b = 0.215080 1.307140I
4.93480 5.65624I 2.00000 + 5.95889I
u = 0.215080 + 1.307140I
a = 1.37744 0.32041I
b = 0.215080 1.307140I
9.07239 2.82812I 8.52927 + 2.97945I
u = 0.215080 1.307140I
a = 0.407481 + 0.986732I
b = 0.215080 + 1.307140I
4.93480 + 5.65624I 2.00000 5.95889I
u = 0.215080 1.307140I
a = 1.37744 + 0.32041I
b = 0.215080 + 1.307140I
9.07239 + 2.82812I 8.52927 2.97945I
u = 0.569840
a = 0.71508 + 1.73159I
b = 0.569840
0.79722 2.82812I 4.52927 + 2.97945I
u = 0.569840
a = 0.71508 1.73159I
b = 0.569840
0.79722 + 2.82812I 4.52927 2.97945I
9
III. I
u
3
= h−3u
5
+ 11u
4
+ · · · + 4b + 12, 3u
5
9u
4
+ 20u
3
23u
2
+ 8a +
14u 4, u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
3
8
u
5
+
9
8
u
4
+ ···
7
4
u +
1
2
3
4
u
5
11
4
u
4
+ ··· + 7u 3
a
7
=
3
8
u
5
13
8
u
4
+ ··· +
21
4
u
5
2
3
4
u
5
11
4
u
4
+ ··· + 7u 3
a
1
=
5
8
u
5
19
8
u
4
+ ··· +
23
4
u 3
3
4
u
5
+
13
4
u
4
+ ···
17
2
u + 5
a
2
=
1
8
u
5
7
8
u
4
+ ··· +
15
4
u 1
3
4
u
5
13
4
u
4
+ ··· +
19
2
u 5
a
5
=
1
8
u
5
+
5
8
u
4
+ ··· +
13
8
u
2
1
2
u
u
5
+
7
2
u
4
17
2
u
3
+ 11u
2
19
2
u + 5
a
8
=
u
u
3
+ u
a
8
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
+ u
4
2u
3
+ u
2
4u + 6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
3
+ u
2
1)
2
c
2
, c
5
, c
6
c
9
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
8
u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8
c
7
u
6
7u
5
+ 24u
4
47u
3
+ 54u
2
32u + 8
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
y
2
+ 2y 1)
2
c
2
, c
5
, c
6
c
9
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
8
y
6
+ 3y
5
+ 2y
4
25y
3
+ 8y
2
+ 48y + 64
c
7
y
6
y
5
+ 26y
4
49y
3
+ 292y
2
160y + 64
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.407481 + 0.986732I
a = 0.203741 + 0.493366I
b = 0.569840
0.79722 + 2.82812I 4.52927 2.97945I
u = 0.407481 0.986732I
a = 0.203741 0.493366I
b = 0.569840
0.79722 2.82812I 4.52927 + 2.97945I
u = 1.37744 + 0.32041I
a = 0.357540 0.865797I
b = 0.215080 + 1.307140I
4.93480 + 5.65624I 2.00000 5.95889I
u = 1.37744 0.32041I
a = 0.357540 + 0.865797I
b = 0.215080 1.307140I
4.93480 5.65624I 2.00000 + 5.95889I
u = 0.71508 + 1.73159I
a = 0.688719 0.160205I
b = 0.215080 + 1.307140I
9.07239 + 2.82812I 8.52927 2.97945I
u = 0.71508 1.73159I
a = 0.688719 + 0.160205I
b = 0.215080 1.307140I
9.07239 2.82812I 8.52927 + 2.97945I
13
IV. I
u
4
= h−u
2
b + b
2
2bu 2u, a 1, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
1
b
a
7
=
b + 1
b
a
1
=
u
bu + u
a
2
=
u
2
b + 2bu + b + 2u + 1
u
2
b + 2bu + 2u
a
5
=
u
2
+ 1
u
2
b + u
2
+ b
a
8
=
u
u
2
u 1
a
8
=
u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
b + 4bu + 8u
2
+ 4b + 12u + 10
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
7u
5
+ 24u
4
47u
3
+ 54u
2
32u + 8
c
2
, c
6
u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8
c
3
, c
5
, c
8
c
9
(u
3
+ u
2
+ 2u + 1)
2
c
4
, c
7
(u
3
+ u
2
1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
y
5
+ 26y
4
49y
3
+ 292y
2
160y + 64
c
2
, c
6
y
6
+ 3y
5
+ 2y
4
25y
3
+ 8y
2
+ 48y + 64
c
3
, c
5
, c
8
c
9
(y
3
+ 3y
2
+ 2y 1)
2
c
4
, c
7
(y
3
y
2
+ 2y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.00000
b = 1.37744 + 0.32041I
4.93480 5.65624I 2.00000 + 5.95889I
u = 0.215080 + 1.307140I
a = 1.00000
b = 0.71508 + 1.73159I
9.07239 2.82812I 8.52927 + 2.97945I
u = 0.215080 1.307140I
a = 1.00000
b = 1.37744 0.32041I
4.93480 + 5.65624I 2.00000 5.95889I
u = 0.215080 1.307140I
a = 1.00000
b = 0.71508 1.73159I
9.07239 + 2.82812I 8.52927 2.97945I
u = 0.569840
a = 1.00000
b = 0.407481 + 0.986732I
0.79722 2.82812I 4.52927 + 2.97945I
u = 0.569840
a = 1.00000
b = 0.407481 0.986732I
0.79722 + 2.82812I 4.52927 2.97945I
17
V. I
u
5
= hb + u, a + 1, u
4
+ 2u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
1
u
a
7
=
u 1
u
a
1
=
u
u
2
+ u
a
2
=
u
2
+ u + 1
u
2
a
5
=
u
2
1
u
3
u
2
u
a
8
=
u
u
3
+ u
a
8
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
3u
2
6u 3
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
u
4
+ u
3
+ 1
c
2
, c
5
, c
8
u
4
+ 2u
2
+ u + 1
c
3
, c
6
, c
9
u
4
+ 2u
2
u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
y
4
y
3
+ 2y
2
+ 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
y
4
+ 4y
3
+ 6y
2
+ 3y + 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.343815 + 0.625358I
a = 1.00000
b = 0.343815 0.625358I
2.15173 + 3.38562I 3.15611 4.97381I
u = 0.343815 0.625358I
a = 1.00000
b = 0.343815 + 0.625358I
2.15173 3.38562I 3.15611 + 4.97381I
u = 0.343815 + 1.358440I
a = 1.00000
b = 0.343815 1.358440I
7.71788 2.37936I 1.34389 + 0.72682I
u = 0.343815 1.358440I
a = 1.00000
b = 0.343815 + 1.358440I
7.71788 + 2.37936I 1.34389 0.72682I
21
VI.
I
u
6
= h−au + b u 1, u
2
a + a
2
au + 3u
2
a + u + 5, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
6
=
a
au + u + 1
a
7
=
au + a + u + 1
au + u + 1
a
1
=
au + 2u
2
a + u + 3
u
2
2
a
2
=
u
2
a + au + 2u
2
+ 2u + 3
u
2
a + au + u 1
a
5
=
au u
2
1
u
2
a + au + a + u + 1
a
8
=
u
u
2
u 1
a
8
=
u
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
(u
3
+ u
2
1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
(u
3
+ u
2
+ 2u + 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
(y
3
y
2
+ 2y 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
(y
3
+ 3y
2
+ 2y 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.947279 + 0.320410I
b = 0.569840
4.93480 2.00000
u = 0.215080 + 1.307140I
a = 0.069840 + 0.424452I
b = 0.215080 + 1.307140I
4.93480 2.00000
u = 0.215080 1.307140I
a = 0.947279 0.320410I
b = 0.569840
4.93480 2.00000
u = 0.215080 1.307140I
a = 0.069840 0.424452I
b = 0.215080 1.307140I
4.93480 2.00000
u = 0.569840
a = 0.37744 + 2.29387I
b = 0.215080 1.307140I
4.93480 2.00000
u = 0.569840
a = 0.37744 2.29387I
b = 0.215080 + 1.307140I
4.93480 2.00000
25
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
(u
3
+ u
2
1)
6
(u
4
3u
3
+ 4u
2
2u + 1)(u
4
+ u
3
+ 1)
· (u
6
7u
5
+ 24u
4
47u
3
+ 54u
2
32u + 8)
c
2
, c
5
, c
8
(u
3
+ u
2
+ 2u + 1)
6
(u
4
+ 2u
2
+ u + 1)(u
4
2u
3
+ 4u
2
3u + 1)
· (u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8)
c
3
, c
6
, c
9
(u
3
+ u
2
+ 2u + 1)
6
(u
4
+ 2u
2
u + 1)(u
4
2u
3
+ 4u
2
3u + 1)
· (u
6
5u
5
+ 14u
4
25u
3
+ 28u
2
20u + 8)
26
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
(y
3
y
2
+ 2y 1)
6
(y
4
y
3
+ 2y
2
+ 1)(y
4
y
3
+ 6y
2
+ 4y + 1)
· (y
6
y
5
+ 26y
4
49y
3
+ 292y
2
160y + 64)
c
2
, c
3
, c
5
c
6
, c
8
, c
9
((y
3
+ 3y
2
+ 2y 1)
6
)(y
4
+ 4y
3
+ 6y
2
y + 1)(y
4
+ 4y
3
+ ··· + 3y + 1)
· (y
6
+ 3y
5
+ 2y
4
25y
3
+ 8y
2
+ 48y + 64)
27