11n
154
(K11n
154
)
A knot diagram
1
Linearized knot diagam
10 9 1 2 9 10 3 11 6 4 8
Solving Sequence
6,9
10
3,7
2 1 5 4 11 8
c
9
c
6
c
2
c
1
c
5
c
4
c
10
c
8
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.31566 × 10
70
u
49
+ 5.59358 × 10
70
u
48
+ ··· + 6.53231 × 10
69
b 5.03553 × 10
70
,
3.55956 × 10
70
u
49
1.50298 × 10
71
u
48
+ ··· + 6.53231 × 10
69
a + 1.72500 × 10
71
, u
50
+ 4u
49
+ ··· 6u + 1i
I
u
2
= hu
10
u
9
3u
8
+ 3u
7
+ 4u
6
4u
5
7u
4
+ 6u
3
+ 7u
2
+ b 3u 2,
15u
10
+ 10u
9
+ 45u
8
26u
7
61u
6
+ 30u
5
+ 107u
4
44u
3
102u
2
+ a + 7u + 21,
u
11
u
10
3u
9
+ 3u
8
+ 4u
7
4u
6
7u
5
+ 6u
4
+ 7u
3
4u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.32×10
70
u
49
+5.59×10
70
u
48
+· · ·+6.53×10
69
b5.04×10
70
, 3.56×
10
70
u
49
1.50×10
71
u
48
+· · ·+6.53×10
69
a+1.73×10
71
, u
50
+4u
49
+· · ·6u+1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
5.44916u
49
+ 23.0084u
48
+ ··· + 36.9971u 26.4072
2.01408u
49
8.56295u
48
+ ··· 15.0392u + 7.70865
a
7
=
u
u
3
+ u
a
2
=
3.43508u
49
+ 14.4454u
48
+ ··· + 21.9578u 18.6986
2.01408u
49
8.56295u
48
+ ··· 15.0392u + 7.70865
a
1
=
5.50930u
49
+ 23.2971u
48
+ ··· + 37.7925u 27.1123
1.94686u
49
8.15972u
48
+ ··· 13.7847u + 7.15385
a
5
=
u
u
a
4
=
7.20223u
49
+ 30.4910u
48
+ ··· + 55.1926u 32.3223
1.16935u
49
5.08349u
48
+ ··· 12.3880u + 5.64687
a
11
=
0.0754028u
49
0.252955u
48
+ ··· + 13.1088u + 4.21868
1.44659u
49
+ 5.86887u
48
+ ··· + 6.37477u 5.35313
a
8
=
6.55926u
49
+ 27.8864u
48
+ ··· + 49.0350u 30.2341
1.23352u
49
5.24956u
48
+ ··· 10.3413u + 5.39025
a
8
=
6.55926u
49
+ 27.8864u
48
+ ··· + 49.0350u 30.2341
1.23352u
49
5.24956u
48
+ ··· 10.3413u + 5.39025
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.39014u
49
+ 28.2211u
48
+ ··· + 72.9518u 36.4279
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
50
+ 8u
49
+ ··· 87u + 71
c
2
u
50
+ 2u
49
+ ··· + 314u + 193
c
3
u
50
6u
49
+ ··· + 10u 1
c
4
u
50
5u
49
+ ··· + 304u + 403
c
5
, c
6
, c
9
u
50
+ 4u
49
+ ··· 6u + 1
c
7
u
50
+ u
49
+ ··· + 512u + 29
c
8
, c
11
u
50
+ u
49
+ ··· + 3u
2
+ 1
c
10
u
50
+ 2u
49
+ ··· + 13u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
50
20y
49
+ ··· 590053y + 5041
c
2
y
50
+ 46y
49
+ ··· + 780712y + 37249
c
3
y
50
4y
49
+ ··· 154y
2
+ 1
c
4
y
50
45y
49
+ ··· 1305446y + 162409
c
5
, c
6
, c
9
y
50
12y
49
+ ··· 48y + 1
c
7
y
50
+ 13y
49
+ ··· 327684y + 841
c
8
, c
11
y
50
+ 31y
49
+ ··· + 6y + 1
c
10
y
50
2y
49
+ ··· 35y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.973898 + 0.287950I
a = 0.695696 + 0.419798I
b = 0.457776 + 0.369939I
1.86387 + 0.30095I 9.64984 1.90143I
u = 0.973898 0.287950I
a = 0.695696 0.419798I
b = 0.457776 0.369939I
1.86387 0.30095I 9.64984 + 1.90143I
u = 0.913846 + 0.185540I
a = 0.335931 + 0.804509I
b = 0.922990 0.289493I
2.08438 2.77960I 10.17164 + 4.44197I
u = 0.913846 0.185540I
a = 0.335931 0.804509I
b = 0.922990 + 0.289493I
2.08438 + 2.77960I 10.17164 4.44197I
u = 0.835381 + 0.772928I
a = 0.47188 + 1.50692I
b = 0.98491 1.67790I
2.93158 + 5.78038I 3.00000 8.73361I
u = 0.835381 0.772928I
a = 0.47188 1.50692I
b = 0.98491 + 1.67790I
2.93158 5.78038I 3.00000 + 8.73361I
u = 0.597674 + 0.996526I
a = 0.095278 0.867392I
b = 0.19400 + 1.85191I
0.94420 + 4.84658I 0. 16.7858I
u = 0.597674 0.996526I
a = 0.095278 + 0.867392I
b = 0.19400 1.85191I
0.94420 4.84658I 0. + 16.7858I
u = 0.815937 + 0.186566I
a = 0.64349 1.28176I
b = 0.673813 + 1.147990I
4.23706 3.34809I 10.42134 + 1.19861I
u = 0.815937 0.186566I
a = 0.64349 + 1.28176I
b = 0.673813 1.147990I
4.23706 + 3.34809I 10.42134 1.19861I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.963408 + 0.692141I
a = 1.132490 + 0.483149I
b = 0.25869 1.55132I
2.51794 0.16160I 0
u = 0.963408 0.692141I
a = 1.132490 0.483149I
b = 0.25869 + 1.55132I
2.51794 + 0.16160I 0
u = 0.636888 + 1.050190I
a = 0.675338 + 1.117000I
b = 0.329148 1.016950I
3.30459 + 1.24081I 0
u = 0.636888 1.050190I
a = 0.675338 1.117000I
b = 0.329148 + 1.016950I
3.30459 1.24081I 0
u = 0.903142 + 0.837436I
a = 0.89244 + 1.30977I
b = 0.35436 1.78012I
4.40850 3.12436I 0
u = 0.903142 0.837436I
a = 0.89244 1.30977I
b = 0.35436 + 1.78012I
4.40850 + 3.12436I 0
u = 0.557299 + 0.500566I
a = 1.78993 + 1.80158I
b = 0.421947 0.110229I
3.04563 + 6.16036I 5.83312 10.36352I
u = 0.557299 0.500566I
a = 1.78993 1.80158I
b = 0.421947 + 0.110229I
3.04563 6.16036I 5.83312 + 10.36352I
u = 0.736164
a = 0.886089
b = 0.812664
1.37116 7.85670
u = 0.288799 + 0.670270I
a = 0.549822 + 0.201160I
b = 0.231209 + 0.384240I
0.74993 + 1.80678I 3.40421 3.27437I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.288799 0.670270I
a = 0.549822 0.201160I
b = 0.231209 0.384240I
0.74993 1.80678I 3.40421 + 3.27437I
u = 0.710444 + 0.074039I
a = 1.60904 1.03329I
b = 1.205030 0.316628I
4.51765 + 4.23526I 12.34564 0.73227I
u = 0.710444 0.074039I
a = 1.60904 + 1.03329I
b = 1.205030 + 0.316628I
4.51765 4.23526I 12.34564 + 0.73227I
u = 0.965620 + 0.857282I
a = 0.820961 + 1.063210I
b = 0.18244 1.58681I
4.33842 3.23438I 0
u = 0.965620 0.857282I
a = 0.820961 1.063210I
b = 0.18244 + 1.58681I
4.33842 + 3.23438I 0
u = 0.563185 + 0.349209I
a = 0.166277 + 0.562597I
b = 2.08804 0.12116I
3.78607 5.93938I 6.42894 + 12.06653I
u = 0.563185 0.349209I
a = 0.166277 0.562597I
b = 2.08804 + 0.12116I
3.78607 + 5.93938I 6.42894 12.06653I
u = 0.802008 + 1.081440I
a = 0.618176 0.851982I
b = 0.02927 + 1.60011I
6.57814 + 2.00021I 0
u = 0.802008 1.081440I
a = 0.618176 + 0.851982I
b = 0.02927 1.60011I
6.57814 2.00021I 0
u = 0.790681 + 1.114590I
a = 0.805915 0.850484I
b = 0.14947 + 1.53184I
3.11102 8.02113I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.790681 1.114590I
a = 0.805915 + 0.850484I
b = 0.14947 1.53184I
3.11102 + 8.02113I 0
u = 0.292603 + 0.539944I
a = 0.367718 + 0.535422I
b = 0.956495 + 0.240511I
1.06170 + 1.95789I 2.50049 3.97543I
u = 0.292603 0.539944I
a = 0.367718 0.535422I
b = 0.956495 0.240511I
1.06170 1.95789I 2.50049 + 3.97543I
u = 0.549411 + 0.272810I
a = 0.49144 + 2.18390I
b = 0.042142 0.459151I
0.60147 2.63277I 0.64260 + 6.35036I
u = 0.549411 0.272810I
a = 0.49144 2.18390I
b = 0.042142 + 0.459151I
0.60147 + 2.63277I 0.64260 6.35036I
u = 1.40477
a = 0.402422
b = 0.427165
2.53971 0
u = 1.030240 + 0.960055I
a = 0.435587 0.666622I
b = 0.65359 + 1.43821I
0.48592 + 3.61316I 0
u = 1.030240 0.960055I
a = 0.435587 + 0.666622I
b = 0.65359 1.43821I
0.48592 3.61316I 0
u = 0.91934 + 1.08476I
a = 0.616459 + 1.203170I
b = 0.238685 1.355140I
4.11263 3.83167I 0
u = 0.91934 1.08476I
a = 0.616459 1.203170I
b = 0.238685 + 1.355140I
4.11263 + 3.83167I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.11330 + 0.90983I
a = 0.632047 0.971558I
b = 0.65462 + 1.62579I
5.57747 9.21703I 0
u = 1.11330 0.90983I
a = 0.632047 + 0.971558I
b = 0.65462 1.62579I
5.57747 + 9.21703I 0
u = 1.12578 + 0.90724I
a = 0.566919 1.147900I
b = 0.72405 + 1.73806I
2.0157 + 15.3090I 0
u = 1.12578 0.90724I
a = 0.566919 + 1.147900I
b = 0.72405 1.73806I
2.0157 15.3090I 0
u = 1.21156 + 0.89742I
a = 0.397984 + 0.889144I
b = 0.173869 1.329530I
1.55527 + 5.89362I 0
u = 1.21156 0.89742I
a = 0.397984 0.889144I
b = 0.173869 + 1.329530I
1.55527 5.89362I 0
u = 1.51600 + 0.17015I
a = 0.324411 + 0.071542I
b = 0.043698 0.329284I
7.03500 5.35259I 0
u = 1.51600 0.17015I
a = 0.324411 0.071542I
b = 0.043698 + 0.329284I
7.03500 + 5.35259I 0
u = 0.234313 + 0.025877I
a = 3.28109 + 3.13603I
b = 0.065339 0.963971I
0.24228 2.13866I 2.49155 + 4.03852I
u = 0.234313 0.025877I
a = 3.28109 3.13603I
b = 0.065339 + 0.963971I
0.24228 + 2.13866I 2.49155 4.03852I
9
II.
I
u
2
= hu
10
u
9
+· · ·+b2, 15u
10
+10u
9
+· · ·+a+21, u
11
u
10
+· · ·2u+1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
3
=
15u
10
10u
9
+ ··· 7u 21
u
10
+ u
9
+ 3u
8
3u
7
4u
6
+ 4u
5
+ 7u
4
6u
3
7u
2
+ 3u + 2
a
7
=
u
u
3
+ u
a
2
=
14u
10
9u
9
+ ··· 4u 19
u
10
+ u
9
+ 3u
8
3u
7
4u
6
+ 4u
5
+ 7u
4
6u
3
7u
2
+ 3u + 2
a
1
=
20u
10
14u
9
+ ··· 11u 26
u
10
u
9
2u
8
+ 2u
7
+ 2u
6
2u
5
5u
4
+ 4u
3
+ 2u
2
u + 1
a
5
=
u
u
a
4
=
21u
10
+ 10u
9
+ ··· u + 42
10u
10
+ 6u
9
+ ··· + 3u + 16
a
11
=
13u
10
11u
9
+ ··· 15u 16
8u
10
5u
9
+ ··· 2u 14
a
8
=
19u
10
+ 10u
9
+ ··· 148u
2
+ 35
6u
10
+ 3u
9
+ ··· u + 10
a
8
=
19u
10
+ 10u
9
+ ··· 148u
2
+ 35
6u
10
+ 3u
9
+ ··· u + 10
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 37u
10
17u
9
120u
8
+ 48u
7
+ 172u
6
57u
5
289u
4
+ 70u
3
+ 294u
2
+ 3u 78
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
+ u
10
u
9
4u
8
+ u
6
2u
5
3u
4
+ 3u
3
+ 2u
2
u 1
c
2
u
11
+ u
10
+ 2u
9
+ 4u
8
2u
7
+ u
6
2u
5
9u
4
+ 9u
3
+ 2u
2
4u + 1
c
3
u
11
+ 5u
10
+ ··· + 4u + 1
c
4
u
11
6u
10
+ ··· + 4u 1
c
5
, c
6
u
11
+ u
10
3u
9
3u
8
+ 4u
7
+ 4u
6
7u
5
6u
4
+ 7u
3
+ 4u
2
2u 1
c
7
u
11
+ 2u
10
+ 5u
9
+ 9u
8
+ 9u
7
+ 2u
6
+ 5u
5
+ 12u
4
+ 10u
3
2u 1
c
8
u
11
+ 4u
9
2u
8
+ 6u
7
8u
6
+ u
5
13u
4
4u
3
7u
2
2u 1
c
9
u
11
u
10
3u
9
+ 3u
8
+ 4u
7
4u
6
7u
5
+ 6u
4
+ 7u
3
4u
2
2u + 1
c
10
u
11
+ u
10
2u
9
3u
8
+ 3u
7
+ 2u
6
u
5
+ 4u
3
+ u
2
u 1
c
11
u
11
+ 4u
9
+ 2u
8
+ 6u
7
+ 8u
6
+ u
5
+ 13u
4
4u
3
+ 7u
2
2u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
3y
10
+ ··· + 5y 1
c
2
y
11
+ 3y
10
+ ··· + 12y 1
c
3
y
11
3y
10
+ ··· + 20y
2
1
c
4
y
11
4y
10
+ 18y
8
+ 40y
7
+ 28y
6
+ 45y
5
+ 75y
4
+ 70y
3
+ 5y
2
6y 1
c
5
, c
6
, c
9
y
11
7y
10
+ ··· + 12y 1
c
7
y
11
+ 6y
10
+ ··· + 4y 1
c
8
, c
11
y
11
+ 8y
10
+ ··· 10y 1
c
10
y
11
5y
10
+ ··· + 3y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.775260 + 0.879276I
a = 0.187286 + 0.932840I
b = 0.21109 1.51914I
0.70704 + 4.35639I 5.54956 2.55288I
u = 0.775260 0.879276I
a = 0.187286 0.932840I
b = 0.21109 + 1.51914I
0.70704 4.35639I 5.54956 + 2.55288I
u = 0.780915 + 0.043107I
a = 0.35176 + 1.37931I
b = 0.495745 0.113579I
1.14703 + 2.08475I 5.67789 + 0.04134I
u = 0.780915 0.043107I
a = 0.35176 1.37931I
b = 0.495745 + 0.113579I
1.14703 2.08475I 5.67789 0.04134I
u = 0.874107 + 0.934732I
a = 0.74222 + 1.34614I
b = 0.34039 1.50546I
3.59148 3.42396I 7.58514 + 2.00100I
u = 0.874107 0.934732I
a = 0.74222 1.34614I
b = 0.34039 + 1.50546I
3.59148 + 3.42396I 7.58514 2.00100I
u = 1.380430 + 0.112956I
a = 0.051000 + 0.348587I
b = 0.660833 0.171838I
7.66458 5.46030I 13.6502 + 4.8917I
u = 1.380430 0.112956I
a = 0.051000 0.348587I
b = 0.660833 + 0.171838I
7.66458 + 5.46030I 13.6502 4.8917I
u = 1.42602
a = 0.376679
b = 0.724774
2.78763 26.4320
u = 0.514652 + 0.025908I
a = 0.96384 + 2.00148I
b = 1.42350 0.12348I
3.96271 5.00716I 8.32130 + 5.65788I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.514652 0.025908I
a = 0.96384 2.00148I
b = 1.42350 + 0.12348I
3.96271 + 5.00716I 8.32130 5.65788I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
+ u
10
u
9
4u
8
+ u
6
2u
5
3u
4
+ 3u
3
+ 2u
2
u 1)
· (u
50
+ 8u
49
+ ··· 87u + 71)
c
2
(u
11
+ u
10
+ 2u
9
+ 4u
8
2u
7
+ u
6
2u
5
9u
4
+ 9u
3
+ 2u
2
4u + 1)
· (u
50
+ 2u
49
+ ··· + 314u + 193)
c
3
(u
11
+ 5u
10
+ ··· + 4u + 1)(u
50
6u
49
+ ··· + 10u 1)
c
4
(u
11
6u
10
+ ··· + 4u 1)(u
50
5u
49
+ ··· + 304u + 403)
c
5
, c
6
(u
11
+ u
10
3u
9
3u
8
+ 4u
7
+ 4u
6
7u
5
6u
4
+ 7u
3
+ 4u
2
2u 1)
· (u
50
+ 4u
49
+ ··· 6u + 1)
c
7
(u
11
+ 2u
10
+ 5u
9
+ 9u
8
+ 9u
7
+ 2u
6
+ 5u
5
+ 12u
4
+ 10u
3
2u 1)
· (u
50
+ u
49
+ ··· + 512u + 29)
c
8
(u
11
+ 4u
9
2u
8
+ 6u
7
8u
6
+ u
5
13u
4
4u
3
7u
2
2u 1)
· (u
50
+ u
49
+ ··· + 3u
2
+ 1)
c
9
(u
11
u
10
3u
9
+ 3u
8
+ 4u
7
4u
6
7u
5
+ 6u
4
+ 7u
3
4u
2
2u + 1)
· (u
50
+ 4u
49
+ ··· 6u + 1)
c
10
(u
11
+ u
10
2u
9
3u
8
+ 3u
7
+ 2u
6
u
5
+ 4u
3
+ u
2
u 1)
· (u
50
+ 2u
49
+ ··· + 13u 1)
c
11
(u
11
+ 4u
9
+ 2u
8
+ 6u
7
+ 8u
6
+ u
5
+ 13u
4
4u
3
+ 7u
2
2u + 1)
· (u
50
+ u
49
+ ··· + 3u
2
+ 1)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
11
3y
10
+ ··· + 5y 1)(y
50
20y
49
+ ··· 590053y + 5041)
c
2
(y
11
+ 3y
10
+ ··· + 12y 1)(y
50
+ 46y
49
+ ··· + 780712y + 37249)
c
3
(y
11
3y
10
+ ··· + 20y
2
1)(y
50
4y
49
+ ··· 154y
2
+ 1)
c
4
(y
11
4y
10
+ 18y
8
+ 40y
7
+ 28y
6
+ 45y
5
+ 75y
4
+ 70y
3
+ 5y
2
6y 1)
· (y
50
45y
49
+ ··· 1305446y + 162409)
c
5
, c
6
, c
9
(y
11
7y
10
+ ··· + 12y 1)(y
50
12y
49
+ ··· 48y + 1)
c
7
(y
11
+ 6y
10
+ ··· + 4y 1)(y
50
+ 13y
49
+ ··· 327684y + 841)
c
8
, c
11
(y
11
+ 8y
10
+ ··· 10y 1)(y
50
+ 31y
49
+ ··· + 6y + 1)
c
10
(y
11
5y
10
+ ··· + 3y 1)(y
50
2y
49
+ ··· 35y + 1)
16