11n
155
(K11n
155
)
A knot diagram
1
Linearized knot diagam
10 8 1 2 9 3 1 6 5 4 8
Solving Sequence
5,9
6
2,10
1 4 3 7 8 11
c
5
c
9
c
1
c
4
c
3
c
6
c
8
c
11
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
17
+ 5u
16
+ ··· + b + 1, u
17
+ 7u
16
+ ··· + 2a + 17, u
18
+ 5u
17
+ ··· + 13u + 2i
I
u
2
= hu
5
+ u
4
+ 3u
3
+ 2u
2
+ b + 2u, u
5
+ 2u
4
+ 4u
3
+ 5u
2
+ a + 4u + 2,
u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 16u
5
+ 15u
4
+ 12u
3
+ 5u
2
1i
I
u
3
= hu
7
a + 4u
7
+ 5u
5
a 7u
6
+ u
4
a + 20u
5
+ 8u
3
a 24u
4
+ 4u
2
a + 25u
3
+ 6au 19u
2
+ 7b a + 3u + 3,
u
6
a + u
7
2u
5
a + 5u
4
a + 4u
5
6u
3
a u
4
+ 6u
2
a + 5u
3
+ a
2
4au 3u
2
+ a + u + 2,
u
8
u
7
+ 5u
6
4u
5
+ 7u
4
4u
3
+ 2u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
17
+5u
16
+· · ·+b+1, u
17
+7u
16
+· · ·+2a+17, u
18
+5u
17
+· · ·+13u+2i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
1
2
u
17
7
2
u
16
+ ··· 42u
17
2
u
17
5u
16
+ ··· 14u 1
a
10
=
u
u
a
1
=
1
2
u
17
7
2
u
16
+ ··· 30u
13
2
u
17
5u
16
+ ··· 2u + 1
a
4
=
1
2
u
17
+
3
2
u
16
+ ··· 10u
5
2
u
17
5u
16
+ ··· 20u 3
a
3
=
3
2
u
17
15
2
u
16
+ ··· 45u
17
2
u
17
4u
16
+ ··· 2u
2
+ 1
a
7
=
1
2
u
17
5
2
u
16
+ ··· 6u
1
2
u
16
4u
15
+ ··· 6u 1
a
8
=
u
u
3
+ u
a
11
=
1
2
u
17
7
2
u
16
+ ··· 29u
13
2
u
17
5u
16
+ ··· 3u + 1
a
11
=
1
2
u
17
7
2
u
16
+ ··· 29u
13
2
u
17
5u
16
+ ··· 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
17
+ 19u
16
+ 83u
15
+ 236u
14
+ 583u
13
+ 1152u
12
+ 1976u
11
+ 2870u
10
+ 3638u
9
+
3961u
8
+ 3775u
7
+ 3072u
6
+ 2159u
5
+ 1248u
4
+ 580u
3
+ 175u
2
+ 39u 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
18
+ u
17
+ ··· 6u + 1
c
2
u
18
10u
16
+ ··· u + 23
c
3
u
18
11u
17
+ ··· 17u + 24
c
5
, c
8
, c
9
u
18
+ 5u
17
+ ··· + 13u + 2
c
6
, c
7
, c
11
u
18
+ u
17
+ ··· + u + 1
c
10
u
18
+ 16u
17
+ ··· + 1792u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
+ 11y
17
+ ··· 8y + 1
c
2
y
18
20y
17
+ ··· + 597y + 529
c
3
y
18
23y
17
+ ··· 433y + 576
c
5
, c
8
, c
9
y
18
+ 19y
17
+ ··· + 47y + 4
c
6
, c
7
, c
11
y
18
27y
17
+ ··· 7y + 1
c
10
y
18
+ 70y
16
+ ··· + 262144y + 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.792060 + 0.657087I
a = 0.537685 + 0.783791I
b = 0.78194 + 1.18447I
8.36952 8.49029I 4.40486 + 6.13776I
u = 0.792060 0.657087I
a = 0.537685 0.783791I
b = 0.78194 1.18447I
8.36952 + 8.49029I 4.40486 6.13776I
u = 0.298470 + 0.918902I
a = 0.477719 0.191775I
b = 0.302221 + 0.080115I
0.45845 + 1.47133I 0.00849 6.64687I
u = 0.298470 0.918902I
a = 0.477719 + 0.191775I
b = 0.302221 0.080115I
0.45845 1.47133I 0.00849 + 6.64687I
u = 0.921919 + 0.489220I
a = 0.516597 + 0.056157I
b = 0.464186 0.991439I
7.77265 + 2.85464I 5.54920 2.31741I
u = 0.921919 0.489220I
a = 0.516597 0.056157I
b = 0.464186 + 0.991439I
7.77265 2.85464I 5.54920 + 2.31741I
u = 0.02005 + 1.48615I
a = 0.164479 + 1.268870I
b = 0.481449 + 0.953626I
6.93662 + 0.90661I 5.69894 2.68686I
u = 0.02005 1.48615I
a = 0.164479 1.268870I
b = 0.481449 0.953626I
6.93662 0.90661I 5.69894 + 2.68686I
u = 0.07899 + 1.48902I
a = 0.12260 1.85492I
b = 0.98678 1.23806I
5.88062 4.16437I 5.71584 + 1.90881I
u = 0.07899 1.48902I
a = 0.12260 + 1.85492I
b = 0.98678 + 1.23806I
5.88062 + 4.16437I 5.71584 1.90881I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.055529 + 0.496915I
a = 1.262720 + 0.103006I
b = 0.170673 + 0.568505I
0.543265 + 1.120070I 3.86919 5.32416I
u = 0.055529 0.496915I
a = 1.262720 0.103006I
b = 0.170673 0.568505I
0.543265 1.120070I 3.86919 + 5.32416I
u = 0.324172 + 0.337864I
a = 1.69010 0.72509I
b = 0.739762 0.866952I
0.25135 2.82287I 6.88072 + 3.05587I
u = 0.324172 0.337864I
a = 1.69010 + 0.72509I
b = 0.739762 + 0.866952I
0.25135 + 2.82287I 6.88072 3.05587I
u = 0.25901 + 1.58887I
a = 0.03925 + 1.88256I
b = 0.94339 + 1.44899I
15.7704 12.3848I 6.66577 + 5.56864I
u = 0.25901 1.58887I
a = 0.03925 1.88256I
b = 0.94339 1.44899I
15.7704 + 12.3848I 6.66577 5.56864I
u = 0.34675 + 1.59425I
a = 0.647761 0.887645I
b = 0.028471 1.040200I
14.5599 1.9312I 9.20699 + 1.03940I
u = 0.34675 1.59425I
a = 0.647761 + 0.887645I
b = 0.028471 + 1.040200I
14.5599 + 1.9312I 9.20699 1.03940I
6
II. I
u
2
= hu
5
+ u
4
+ 3u
3
+ 2u
2
+ b + 2u, u
5
+ 2u
4
+ 4u
3
+ 5u
2
+ a + 4u +
2, u
9
+ 2u
8
+ · · · + 5u
2
1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
u
5
2u
4
4u
3
5u
2
4u 2
u
5
u
4
3u
3
2u
2
2u
a
10
=
u
u
a
1
=
u
6
2u
5
5u
4
6u
3
7u
2
4u 2
u
6
2u
5
4u
4
5u
3
4u
2
2u
a
4
=
u
6
+ 2u
5
+ 5u
4
+ 7u
3
+ 7u
2
+ 5u + 2
u
6
+ u
5
+ 4u
4
+ 3u
3
+ 4u
2
+ u
a
3
=
u
7
2u
6
6u
5
8u
4
10u
3
8u
2
4u 1
u
7
2u
6
6u
5
7u
4
9u
3
5u
2
2u
a
7
=
u
8
+ 2u
7
+ 6u
6
+ 9u
5
+ 13u
4
+ 14u
3
+ 12u
2
+ 7u + 3
u
8
+ u
7
+ 4u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 3u
2
+ 3u + 1
a
8
=
u
u
3
+ u
a
11
=
u
6
2u
5
6u
4
7u
3
9u
2
5u 2
u
5
u
4
3u
3
2u
2
u
a
11
=
u
6
2u
5
6u
4
7u
3
9u
2
5u 2
u
5
u
4
3u
3
2u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
5u
7
26u
6
25u
5
52u
4
35u
3
29u
2
7u + 1
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
9
u
8
+ 3u
6
2u
4
+ 3u
3
+ u
2
u + 1
c
2
u
9
4u
7
+ 2u
6
+ 9u
5
+ 2u
4
u
3
+ u
2
+ 1
c
3
u
9
+ 8u
8
+ 28u
7
+ 59u
6
+ 88u
5
+ 99u
4
+ 83u
3
+ 51u
2
+ 21u + 5
c
5
u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 16u
5
+ 15u
4
+ 12u
3
+ 5u
2
1
c
6
, c
11
u
9
u
8
3u
7
+ 2u
6
+ 2u
4
+ 3u
2
+ 1
c
7
u
9
+ u
8
3u
7
2u
6
2u
4
3u
2
1
c
8
, c
9
u
9
2u
8
+ 7u
7
10u
6
+ 16u
5
15u
4
+ 12u
3
5u
2
+ 1
c
10
u
9
u
8
+ u
7
+ 3u
6
2u
5
+ 3u
3
u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
9
y
8
+ 6y
7
7y
6
+ 12y
5
8y
4
+ 7y
3
3y
2
y 1
c
2
y
9
8y
8
+ 34y
7
78y
6
+ 81y
5
26y
4
7y
3
5y
2
2y 1
c
3
y
9
8y
8
+ 16y
7
+ 29y
6
64y
5
115y
4
103y
3
105y
2
69y 25
c
5
, c
8
, c
9
y
9
+ 10y
8
+ 41y
7
+ 88y
6
+ 104y
5
+ 63y
4
+ 14y
3
+ 5y
2
+ 10y 1
c
6
, c
7
, c
11
y
9
7y
8
+ 13y
7
2y
5
14y
4
16y
3
13y
2
6y 1
c
10
y
9
+ y
8
+ 3y
7
7y
6
+ 8y
5
12y
4
+ 7y
3
6y
2
+ y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.472195 + 1.057080I
a = 0.638591 + 0.138962I
b = 0.291926 + 0.569978I
0.857058 0.898737I 7.48049 2.86554I
u = 0.472195 1.057080I
a = 0.638591 0.138962I
b = 0.291926 0.569978I
0.857058 + 0.898737I 7.48049 + 2.86554I
u = 0.604705 + 0.345427I
a = 0.706537 0.317251I
b = 0.704599 0.747798I
1.13540 3.06246I 3.40537 + 6.53342I
u = 0.604705 0.345427I
a = 0.706537 + 0.317251I
b = 0.704599 + 0.747798I
1.13540 + 3.06246I 3.40537 6.53342I
u = 0.10064 + 1.48635I
a = 0.669727 + 1.221890I
b = 0.985174 + 0.537720I
11.81420 + 1.53593I 5.20172 0.08744I
u = 0.10064 1.48635I
a = 0.669727 1.221890I
b = 0.985174 0.537720I
11.81420 1.53593I 5.20172 + 0.08744I
u = 0.17693 + 1.49366I
a = 0.15276 1.61277I
b = 0.93778 1.07792I
4.99677 5.78819I 2.01216 + 5.60852I
u = 0.17693 1.49366I
a = 0.15276 + 1.61277I
b = 0.93778 + 1.07792I
4.99677 + 5.78819I 2.01216 5.60852I
u = 0.306375
a = 3.83018
b = 0.898266
6.41317 5.42200
10
III. I
u
3
= hu
7
a + 4u
7
+ · · · a + 3, u
6
a + u
7
+ · · · + a + 2, u
8
u
7
+ 5u
6
4u
5
+ 7u
4
4u
3
+ 2u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
a
1
7
u
7
a
4
7
u
7
+ ··· +
1
7
a
3
7
a
10
=
u
u
a
1
=
1
7
u
7
a
3
7
u
7
+ ··· +
6
7
a +
3
7
u
7
+ 2u
6
5u
5
+ 6u
4
6u
3
au + 4u
2
u
a
4
=
3
7
u
7
a +
2
7
u
7
+ ···
4
7
a
2
7
3
7
u
7
a +
9
7
u
7
+ ···
4
7
a
2
7
a
3
=
1
7
u
7
a
3
7
u
7
+ ··· +
6
7
a +
3
7
3
7
u
7
a
5
7
u
7
+ ··· +
3
7
a
2
7
a
7
=
u
6
+ 2u
5
5u
4
+ 6u
3
6u
2
+ a + 4u 1
1
7
u
7
a +
4
7
u
7
+ ···
1
7
a +
3
7
a
8
=
u
u
3
+ u
a
11
=
3
7
u
7
a
2
7
u
7
+ ··· +
4
7
a +
2
7
3
7
u
7
a
9
7
u
7
+ ··· +
4
7
a +
2
7
a
11
=
3
7
u
7
a
2
7
u
7
+ ··· +
4
7
a +
2
7
3
7
u
7
a
9
7
u
7
+ ··· +
4
7
a +
2
7
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 4u
5
16u
4
+ 12u
3
16u
2
+ 8u 10
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
16
+ 7u
15
+ ··· + 26u + 7
c
2
u
16
u
15
+ ··· 244u + 263
c
3
(u
8
+ 7u
7
+ 17u
6
+ 14u
5
u
4
+ 2u
3
+ 6u
2
4u + 1)
2
c
5
, c
8
, c
9
(u
8
u
7
+ 5u
6
4u
5
+ 7u
4
4u
3
+ 2u
2
+ 1)
2
c
6
, c
7
, c
11
u
16
u
15
+ ··· + 54u + 43
c
10
(u 1)
16
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
16
y
15
+ ··· + 472y + 49
c
2
y
16
17y
15
+ ··· 326744y + 69169
c
3
(y
8
15y
7
+ 91y
6
246y
5
+ 207y
4
+ 130y
3
+ 50y
2
4y + 1)
2
c
5
, c
8
, c
9
(y
8
+ 9y
7
+ 31y
6
+ 50y
5
+ 39y
4
+ 22y
3
+ 18y
2
+ 4y + 1)
2
c
6
, c
7
, c
11
y
16
21y
15
+ ··· 8076y + 1849
c
10
(y 1)
16
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.647085 + 0.502738I
a = 0.872903 0.232256I
b = 0.232467 0.600007I
0.02985 + 2.18536I 4.41681 3.14055I
u = 0.647085 + 0.502738I
a = 0.142877 + 0.389508I
b = 0.530385 + 0.793677I
0.02985 + 2.18536I 4.41681 3.14055I
u = 0.647085 0.502738I
a = 0.872903 + 0.232256I
b = 0.232467 + 0.600007I
0.02985 2.18536I 4.41681 + 3.14055I
u = 0.647085 0.502738I
a = 0.142877 0.389508I
b = 0.530385 0.793677I
0.02985 2.18536I 4.41681 + 3.14055I
u = 0.283060 + 0.443755I
a = 0.178958 0.761216I
b = 1.37934 0.90268I
6.57974 1.04600I 8.00000 + 6.68545I
u = 0.283060 + 0.443755I
a = 0.54044 + 3.78312I
b = 0.503866 + 0.651460I
6.57974 1.04600I 8.00000 + 6.68545I
u = 0.283060 0.443755I
a = 0.178958 + 0.761216I
b = 1.37934 + 0.90268I
6.57974 + 1.04600I 8.00000 6.68545I
u = 0.283060 0.443755I
a = 0.54044 3.78312I
b = 0.503866 0.651460I
6.57974 + 1.04600I 8.00000 6.68545I
u = 0.06382 + 1.51723I
a = 1.65804 1.38014I
b = 2.13775 1.37856I
13.18930 2.18536I 11.58319 + 3.14055I
u = 0.06382 + 1.51723I
a = 0.87605 + 2.17258I
b = 0.028221 + 0.727930I
13.18930 2.18536I 11.58319 + 3.14055I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.06382 1.51723I
a = 1.65804 + 1.38014I
b = 2.13775 + 1.37856I
13.18930 + 2.18536I 11.58319 3.14055I
u = 0.06382 1.51723I
a = 0.87605 2.17258I
b = 0.028221 0.727930I
13.18930 + 2.18536I 11.58319 3.14055I
u = 0.19980 + 1.51366I
a = 0.459450 1.258690I
b = 0.559608 0.857499I
6.57974 + 5.23868I 8.00000 3.04258I
u = 0.19980 + 1.51366I
a = 0.20610 + 1.75223I
b = 0.81087 + 1.46236I
6.57974 + 5.23868I 8.00000 3.04258I
u = 0.19980 1.51366I
a = 0.459450 + 1.258690I
b = 0.559608 + 0.857499I
6.57974 5.23868I 8.00000 + 3.04258I
u = 0.19980 1.51366I
a = 0.20610 1.75223I
b = 0.81087 1.46236I
6.57974 5.23868I 8.00000 + 3.04258I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
9
u
8
+ ··· u + 1)(u
16
+ 7u
15
+ ··· + 26u + 7)
· (u
18
+ u
17
+ ··· 6u + 1)
c
2
(u
9
4u
7
+ ··· + u
2
+ 1)(u
16
u
15
+ ··· 244u + 263)
· (u
18
10u
16
+ ··· u + 23)
c
3
(u
8
+ 7u
7
+ 17u
6
+ 14u
5
u
4
+ 2u
3
+ 6u
2
4u + 1)
2
· (u
9
+ 8u
8
+ 28u
7
+ 59u
6
+ 88u
5
+ 99u
4
+ 83u
3
+ 51u
2
+ 21u + 5)
· (u
18
11u
17
+ ··· 17u + 24)
c
5
(u
8
u
7
+ 5u
6
4u
5
+ 7u
4
4u
3
+ 2u
2
+ 1)
2
· (u
9
+ 2u
8
+ 7u
7
+ 10u
6
+ 16u
5
+ 15u
4
+ 12u
3
+ 5u
2
1)
· (u
18
+ 5u
17
+ ··· + 13u + 2)
c
6
, c
11
(u
9
u
8
+ ··· + 3u
2
+ 1)(u
16
u
15
+ ··· + 54u + 43)
· (u
18
+ u
17
+ ··· + u + 1)
c
7
(u
9
+ u
8
+ ··· 3u
2
1)(u
16
u
15
+ ··· + 54u + 43)
· (u
18
+ u
17
+ ··· + u + 1)
c
8
, c
9
(u
8
u
7
+ 5u
6
4u
5
+ 7u
4
4u
3
+ 2u
2
+ 1)
2
· (u
9
2u
8
+ 7u
7
10u
6
+ 16u
5
15u
4
+ 12u
3
5u
2
+ 1)
· (u
18
+ 5u
17
+ ··· + 13u + 2)
c
10
(u 1)
16
(u
9
u
8
+ u
7
+ 3u
6
2u
5
+ 3u
3
u + 1)
· (u
18
+ 16u
17
+ ··· + 1792u + 256)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
9
y
8
+ 6y
7
7y
6
+ 12y
5
8y
4
+ 7y
3
3y
2
y 1)
· (y
16
y
15
+ ··· + 472y + 49)(y
18
+ 11y
17
+ ··· 8y + 1)
c
2
(y
9
8y
8
+ 34y
7
78y
6
+ 81y
5
26y
4
7y
3
5y
2
2y 1)
· (y
16
17y
15
+ ··· 326744y + 69169)
· (y
18
20y
17
+ ··· + 597y + 529)
c
3
(y
8
15y
7
+ 91y
6
246y
5
+ 207y
4
+ 130y
3
+ 50y
2
4y + 1)
2
· (y
9
8y
8
+ 16y
7
+ 29y
6
64y
5
115y
4
103y
3
105y
2
69y 25)
· (y
18
23y
17
+ ··· 433y + 576)
c
5
, c
8
, c
9
(y
8
+ 9y
7
+ 31y
6
+ 50y
5
+ 39y
4
+ 22y
3
+ 18y
2
+ 4y + 1)
2
· (y
9
+ 10y
8
+ 41y
7
+ 88y
6
+ 104y
5
+ 63y
4
+ 14y
3
+ 5y
2
+ 10y 1)
· (y
18
+ 19y
17
+ ··· + 47y + 4)
c
6
, c
7
, c
11
(y
9
7y
8
+ 13y
7
2y
5
14y
4
16y
3
13y
2
6y 1)
· (y
16
21y
15
+ ··· 8076y + 1849)(y
18
27y
17
+ ··· 7y + 1)
c
10
(y 1)
16
(y
9
+ y
8
+ 3y
7
7y
6
+ 8y
5
12y
4
+ 7y
3
6y
2
+ y 1)
· (y
18
+ 70y
16
+ ··· + 262144y + 65536)
17