11n
159
(K11n
159
)
A knot diagram
1
Linearized knot diagam
10 9 1 10 11 2 3 11 7 5 8
Solving Sequence
8,11
9
1,3
4 2 7 10 6 5
c
8
c
11
c
3
c
2
c
7
c
9
c
6
c
5
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h4.18672 × 10
96
u
50
1.99216 × 10
96
u
49
+ ··· + 1.57066 × 10
97
b 7.53117 × 10
96
,
6.93809 × 10
95
u
50
3.65626 × 10
96
u
49
+ ··· + 1.57066 × 10
97
a 2.77787 × 10
98
, u
51
+ 19u
49
+ ··· + 13u + 1i
I
u
2
= h−u
15
u
14
3u
13
u
12
+ u
11
+ 6u
10
+ 14u
9
+ 16u
8
+ 22u
7
+ 15u
6
+ 14u
5
+ 6u
4
+ 7u
3
+ u
2
+ b,
201u
15
115u
14
+ ··· + 85a 229, u
16
+ u
15
+ ··· u 1i
* 2 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4.19×10
96
u
50
1.99×10
96
u
49
+· · ·+1.57×10
97
b7.53×10
96
, 6.94×10
95
u
50
3.66 × 10
96
u
49
+ · · · + 1.57 × 10
97
a 2.78 × 10
98
, u
51
+ 19u
49
+ · · · + 13u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
3
=
0.0441731u
50
+ 0.232785u
49
+ ··· + 101.687u + 17.6860
0.266558u
50
+ 0.126836u
49
+ ··· 2.22590u + 0.479491
a
4
=
0.00694886u
50
+ 0.245771u
49
+ ··· + 100.087u + 17.5801
0.215436u
50
+ 0.139822u
49
+ ··· 3.82562u + 0.373542
a
2
=
0.315201u
50
+ 0.322634u
49
+ ··· + 96.4791u + 17.9327
0.255159u
50
+ 0.144501u
49
+ ··· 1.32888u + 0.569340
a
7
=
0.492967u
50
0.795819u
49
+ ··· 148.859u 17.2613
0.135931u
50
0.160168u
49
+ ··· 20.5135u 2.00969
a
10
=
2.73260u
50
+ 0.0713461u
49
+ ··· 195.275u 13.1506
0.141930u
50
+ 0.0517872u
49
+ ··· 5.44851u + 0.0702398
a
6
=
2.17298u
50
0.00432810u
49
+ ··· + 193.781u + 17.3396
0.0132709u
50
+ 0.0275351u
49
+ ··· + 3.99076u + 0.0293163
a
5
=
2.17298u
50
0.00432810u
49
+ ··· + 193.781u + 17.3396
0.0193853u
50
+ 0.0282101u
49
+ ··· + 1.87404u + 0.0336444
a
5
=
2.17298u
50
0.00432810u
49
+ ··· + 193.781u + 17.3396
0.0193853u
50
+ 0.0282101u
49
+ ··· + 1.87404u + 0.0336444
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.101424u
50
+ 0.0191393u
49
+ ··· 6.99335u + 1.74681
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
51
+ 4u
50
+ ··· + 10304u + 1139
c
2
u
51
+ u
50
+ ··· + 197u + 3
c
3
u
51
+ 4u
50
+ ··· 668u + 28
c
4
, c
5
, c
10
u
51
+ u
50
+ ··· 15u 1
c
6
u
51
+ 14u
49
+ ··· 3611u + 487
c
7
u
51
u
50
+ ··· + 2734u 367
c
8
, c
11
u
51
+ 19u
49
+ ··· + 13u + 1
c
9
u
51
+ 3u
50
+ ··· + 17u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
51
+ 48y
50
+ ··· + 51493582y 1297321
c
2
y
51
11y
50
+ ··· + 48673y 9
c
3
y
51
54y
50
+ ··· + 361104y 784
c
4
, c
5
, c
10
y
51
13y
50
+ ··· + 69y 1
c
6
y
51
+ 28y
50
+ ··· 14382675y 237169
c
7
y
51
13y
50
+ ··· + 4303142y 134689
c
8
, c
11
y
51
+ 38y
50
+ ··· 63y 1
c
9
y
51
+ 3y
50
+ ··· + 231y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.493427 + 0.809787I
a = 0.77037 + 1.28680I
b = 1.158320 0.268559I
3.18456 2.09749I 1.52387 + 2.56668I
u = 0.493427 0.809787I
a = 0.77037 1.28680I
b = 1.158320 + 0.268559I
3.18456 + 2.09749I 1.52387 2.56668I
u = 0.440430 + 1.030910I
a = 1.20909 + 0.73700I
b = 0.648815 + 0.030734I
1.47252 + 3.57882I 5.00000 4.02671I
u = 0.440430 1.030910I
a = 1.20909 0.73700I
b = 0.648815 0.030734I
1.47252 3.57882I 5.00000 + 4.02671I
u = 0.479467 + 1.026910I
a = 2.05858 + 0.43573I
b = 0.759278 0.845778I
1.69267 6.49416I 2.47045 + 12.27311I
u = 0.479467 1.026910I
a = 2.05858 0.43573I
b = 0.759278 + 0.845778I
1.69267 + 6.49416I 2.47045 12.27311I
u = 0.743842 + 0.386843I
a = 0.297848 + 0.032171I
b = 0.446197 + 0.593035I
1.328990 + 0.424799I 9.68382 3.33114I
u = 0.743842 0.386843I
a = 0.297848 0.032171I
b = 0.446197 0.593035I
1.328990 0.424799I 9.68382 + 3.33114I
u = 0.095349 + 1.173960I
a = 1.19574 0.93729I
b = 0.696664 0.158856I
0.53609 2.28831I 3.93640 + 2.00082I
u = 0.095349 1.173960I
a = 1.19574 + 0.93729I
b = 0.696664 + 0.158856I
0.53609 + 2.28831I 3.93640 2.00082I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.599757 + 1.068150I
a = 1.59872 + 0.52153I
b = 1.166950 0.515248I
0.82395 + 4.71884I 8.89552 4.87376I
u = 0.599757 1.068150I
a = 1.59872 0.52153I
b = 1.166950 + 0.515248I
0.82395 4.71884I 8.89552 + 4.87376I
u = 0.037987 + 0.741711I
a = 0.487424 0.496015I
b = 0.263663 + 1.061380I
0.97092 + 2.65596I 1.16196 5.22442I
u = 0.037987 0.741711I
a = 0.487424 + 0.496015I
b = 0.263663 1.061380I
0.97092 2.65596I 1.16196 + 5.22442I
u = 0.105363 + 1.293330I
a = 0.842122 1.028860I
b = 1.15000 2.18955I
6.78593 5.05905I 0. + 9.05421I
u = 0.105363 1.293330I
a = 0.842122 + 1.028860I
b = 1.15000 + 2.18955I
6.78593 + 5.05905I 0. 9.05421I
u = 0.605350 + 0.328798I
a = 0.030694 0.438381I
b = 0.582666 + 0.913456I
0.18643 + 2.24007I 4.31467 4.82703I
u = 0.605350 0.328798I
a = 0.030694 + 0.438381I
b = 0.582666 0.913456I
0.18643 2.24007I 4.31467 + 4.82703I
u = 0.103993 + 1.307300I
a = 1.289790 + 0.507751I
b = 1.30493 + 0.86402I
0.75736 4.17149I 0
u = 0.103993 1.307300I
a = 1.289790 0.507751I
b = 1.30493 0.86402I
0.75736 + 4.17149I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.066040 + 1.316750I
a = 1.134200 + 0.598306I
b = 0.869888 0.655773I
7.59339 + 1.64029I 0
u = 0.066040 1.316750I
a = 1.134200 0.598306I
b = 0.869888 + 0.655773I
7.59339 1.64029I 0
u = 0.316521 + 1.283090I
a = 0.973576 + 0.636597I
b = 1.275330 + 0.375261I
4.26515 0.63551I 0
u = 0.316521 1.283090I
a = 0.973576 0.636597I
b = 1.275330 0.375261I
4.26515 + 0.63551I 0
u = 0.169671 + 1.316380I
a = 1.56522 0.54880I
b = 1.61853 1.92364I
8.06935 3.19037I 0
u = 0.169671 1.316380I
a = 1.56522 + 0.54880I
b = 1.61853 + 1.92364I
8.06935 + 3.19037I 0
u = 1.32897
a = 0.301273
b = 0.554539
2.55208 16.4860
u = 1.386170 + 0.040542I
a = 0.0061725 + 0.0594784I
b = 1.060320 + 0.487450I
4.33426 8.28696I 0
u = 1.386170 0.040542I
a = 0.0061725 0.0594784I
b = 1.060320 0.487450I
4.33426 + 8.28696I 0
u = 0.119578 + 1.392790I
a = 1.112220 + 0.798814I
b = 0.741572 0.551742I
8.21456 + 4.85073I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.119578 1.392790I
a = 1.112220 0.798814I
b = 0.741572 + 0.551742I
8.21456 4.85073I 0
u = 1.40409 + 0.33821I
a = 0.0516236 0.0304155I
b = 0.946779 + 0.253375I
4.12435 + 1.05287I 0
u = 1.40409 0.33821I
a = 0.0516236 + 0.0304155I
b = 0.946779 0.253375I
4.12435 1.05287I 0
u = 0.531665
a = 0.598400
b = 0.509912
1.10699 8.71620
u = 0.32774 + 1.48242I
a = 1.280410 0.075549I
b = 1.059310 0.382106I
3.16584 + 5.71287I 0
u = 0.32774 1.48242I
a = 1.280410 + 0.075549I
b = 1.059310 + 0.382106I
3.16584 5.71287I 0
u = 1.54491
a = 0.149552
b = 0.343321
7.66230 0
u = 0.60455 + 1.48396I
a = 1.358730 0.175270I
b = 1.44476 + 0.99917I
9.1940 15.1810I 0
u = 0.60455 1.48396I
a = 1.358730 + 0.175270I
b = 1.44476 0.99917I
9.1940 + 15.1810I 0
u = 0.45015 + 1.55699I
a = 1.287260 0.004117I
b = 1.50034 + 0.96394I
10.36510 + 7.36778I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.45015 1.55699I
a = 1.287260 + 0.004117I
b = 1.50034 0.96394I
10.36510 7.36778I 0
u = 0.013247 + 0.321612I
a = 1.17101 1.69632I
b = 0.490132 1.210900I
4.50411 + 3.58227I 16.0667 6.6127I
u = 0.013247 0.321612I
a = 1.17101 + 1.69632I
b = 0.490132 + 1.210900I
4.50411 3.58227I 16.0667 + 6.6127I
u = 0.70380 + 1.55046I
a = 0.751838 0.224127I
b = 1.028030 + 0.642864I
8.17422 + 6.90097I 0
u = 0.70380 1.55046I
a = 0.751838 + 0.224127I
b = 1.028030 0.642864I
8.17422 6.90097I 0
u = 0.56390 + 1.65705I
a = 0.727943 0.273768I
b = 1.075260 + 0.420157I
9.56909 + 0.79682I 0
u = 0.56390 1.65705I
a = 0.727943 + 0.273768I
b = 1.075260 0.420157I
9.56909 0.79682I 0
u = 0.169815 + 0.103297I
a = 5.86596 + 4.64169I
b = 0.852548 0.435407I
3.57803 1.46219I 0.29485 + 4.98451I
u = 0.169815 0.103297I
a = 5.86596 4.64169I
b = 0.852548 + 0.435407I
3.57803 + 1.46219I 0.29485 4.98451I
u = 0.059185 + 0.143199I
a = 9.53198 + 7.67652I
b = 0.759897 + 0.569891I
2.97946 + 4.11273I 4.99561 + 1.01748I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.059185 0.143199I
a = 9.53198 7.67652I
b = 0.759897 0.569891I
2.97946 4.11273I 4.99561 1.01748I
10
II. I
u
2
= h−u
15
u
14
+ · · · + u
2
+ b, 201u
15
115u
14
+ · · · + 85a
229, u
16
+ u
15
+ · · · u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
a
3
=
2.36471u
15
+ 1.35294u
14
+ ··· 6.82353u + 2.69412
u
15
+ u
14
+ ··· 7u
3
u
2
a
4
=
3.49412u
15
+ 3.05882u
14
+ ··· 6.47059u + 1.68235
2.12941u
15
+ 2.70588u
14
+ ··· + 0.352941u 1.01176
a
2
=
3.49412u
15
+ 3.05882u
14
+ ··· 5.47059u + 1.68235
2.34118u
15
+ 2.58824u
14
+ ··· 1.70588u 0.576471
a
7
=
2.27059u
15
+ 2.29412u
14
+ ··· 7.35294u 1.38824
3u
14
+ 3u
13
+ ··· 4u 4
a
10
=
1.95294u
15
0.529412u
14
+ ··· + 7.23529u + 6.45882
3.96471u
15
0.647059u
14
+ ··· + 3.17647u + 10.0941
a
6
=
1.48235u
15
+ 3.17647u
14
+ ··· 8.41176u 2.95294
16
5
u
15
+ 3u
14
+ ··· 5u
64
5
a
5
=
1.48235u
15
+ 3.17647u
14
+ ··· 8.41176u 2.95294
2.83529u
15
+ 2.35294u
14
+ ··· 1.82353u 11.1059
a
5
=
1.48235u
15
+ 3.17647u
14
+ ··· 8.41176u 2.95294
2.83529u
15
+ 2.35294u
14
+ ··· 1.82353u 11.1059
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1404
85
u
15
541
17
u
14
+ ··· +
1353
17
u +
3829
85
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
u
15
+ ··· + 6u
2
1
c
2
u
16
+ u
14
+ ··· 3u 1
c
3
u
16
+ 9u
15
+ ··· + 48u + 4
c
4
, c
5
u
16
6u
14
+ ··· u + 1
c
6
u
16
3u
15
+ ··· 3u 1
c
7
u
16
+ 2u
14
+ ··· 2u 1
c
8
u
16
+ u
15
+ ··· u 1
c
9
u
16
4u
15
+ ··· + 3u + 1
c
10
u
16
6u
14
+ ··· + u + 1
c
11
u
16
u
15
+ ··· + u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ y
15
+ ··· 12y + 1
c
2
y
16
+ 2y
15
+ ··· 15y + 1
c
3
y
16
13y
15
+ ··· 1600y + 16
c
4
, c
5
, c
10
y
16
12y
15
+ ··· 19y + 1
c
6
y
16
+ 5y
15
+ ··· 11y + 1
c
7
y
16
+ 4y
15
+ ··· 12y + 1
c
8
, c
11
y
16
+ 7y
15
+ ··· + 13y + 1
c
9
y
16
4y
15
+ ··· 9y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.665069 + 0.678799I
a = 0.420824 + 1.344970I
b = 0.711594 + 0.036986I
3.33249 + 0.34499I 2.01757 + 0.37341I
u = 0.665069 0.678799I
a = 0.420824 1.344970I
b = 0.711594 0.036986I
3.33249 0.34499I 2.01757 0.37341I
u = 0.343696 + 1.208130I
a = 1.53898 0.20131I
b = 1.098860 0.865659I
1.66733 + 5.08939I 7.99749 6.39804I
u = 0.343696 1.208130I
a = 1.53898 + 0.20131I
b = 1.098860 + 0.865659I
1.66733 5.08939I 7.99749 + 6.39804I
u = 0.083391 + 0.730027I
a = 0.297481 + 0.552196I
b = 0.53614 + 1.40238I
3.97957 3.37369I 2.06218 + 1.25376I
u = 0.083391 0.730027I
a = 0.297481 0.552196I
b = 0.53614 1.40238I
3.97957 + 3.37369I 2.06218 1.25376I
u = 0.306045 + 0.663071I
a = 1.27171 + 2.87741I
b = 0.792095 + 0.522312I
3.32910 + 4.68558I 1.72806 9.06253I
u = 0.306045 0.663071I
a = 1.27171 2.87741I
b = 0.792095 0.522312I
3.32910 4.68558I 1.72806 + 9.06253I
u = 1.27402
a = 0.404742
b = 0.485688
2.72211 31.3500
u = 0.501271 + 1.175050I
a = 1.72984 + 0.28764I
b = 0.939350 0.528756I
1.52177 5.31010I 3.27149 + 8.11960I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.501271 1.175050I
a = 1.72984 0.28764I
b = 0.939350 + 0.528756I
1.52177 + 5.31010I 3.27149 8.11960I
u = 0.096302 + 0.611710I
a = 0.48873 1.35280I
b = 0.319333 + 0.903954I
1.44991 + 2.46756I 14.2433 0.1322I
u = 0.096302 0.611710I
a = 0.48873 + 1.35280I
b = 0.319333 0.903954I
1.44991 2.46756I 14.2433 + 0.1322I
u = 0.135082 + 1.374290I
a = 0.554322 0.164051I
b = 0.43850 1.39183I
7.35161 3.81019I 1.49699 + 3.24326I
u = 0.135082 1.374290I
a = 0.554322 + 0.164051I
b = 0.43850 + 1.39183I
7.35161 + 3.81019I 1.49699 3.24326I
u = 1.60320
a = 0.0623831
b = 0.449044
7.57445 38.0720
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
16
u
15
+ ··· + 6u
2
1)(u
51
+ 4u
50
+ ··· + 10304u + 1139)
c
2
(u
16
+ u
14
+ ··· 3u 1)(u
51
+ u
50
+ ··· + 197u + 3)
c
3
(u
16
+ 9u
15
+ ··· + 48u + 4)(u
51
+ 4u
50
+ ··· 668u + 28)
c
4
, c
5
(u
16
6u
14
+ ··· u + 1)(u
51
+ u
50
+ ··· 15u 1)
c
6
(u
16
3u
15
+ ··· 3u 1)(u
51
+ 14u
49
+ ··· 3611u + 487)
c
7
(u
16
+ 2u
14
+ ··· 2u 1)(u
51
u
50
+ ··· + 2734u 367)
c
8
(u
16
+ u
15
+ ··· u 1)(u
51
+ 19u
49
+ ··· + 13u + 1)
c
9
(u
16
4u
15
+ ··· + 3u + 1)(u
51
+ 3u
50
+ ··· + 17u + 1)
c
10
(u
16
6u
14
+ ··· + u + 1)(u
51
+ u
50
+ ··· 15u 1)
c
11
(u
16
u
15
+ ··· + u 1)(u
51
+ 19u
49
+ ··· + 13u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
16
+ y
15
+ ··· 12y + 1)
· (y
51
+ 48y
50
+ ··· + 51493582y 1297321)
c
2
(y
16
+ 2y
15
+ ··· 15y + 1)(y
51
11y
50
+ ··· + 48673y 9)
c
3
(y
16
13y
15
+ ··· 1600y + 16)(y
51
54y
50
+ ··· + 361104y 784)
c
4
, c
5
, c
10
(y
16
12y
15
+ ··· 19y + 1)(y
51
13y
50
+ ··· + 69y 1)
c
6
(y
16
+ 5y
15
+ ··· 11y + 1)
· (y
51
+ 28y
50
+ ··· 14382675y 237169)
c
7
(y
16
+ 4y
15
+ ··· 12y + 1)(y
51
13y
50
+ ··· + 4303142y 134689)
c
8
, c
11
(y
16
+ 7y
15
+ ··· + 13y + 1)(y
51
+ 38y
50
+ ··· 63y 1)
c
9
(y
16
4y
15
+ ··· 9y + 1)(y
51
+ 3y
50
+ ··· + 231y 1)
17