11n
164
(K11n
164
)
A knot diagram
1
Linearized knot diagam
8 5 1 10 3 9 3 4 6 4 9
Solving Sequence
1,4 3,9
8 7 6 11 10 5 2
c
3
c
8
c
7
c
6
c
11
c
10
c
4
c
2
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
6
+ u
5
2u
4
2u
2
+ b 2u 1, u
7
+ 3u
6
3u
5
+ 2u
4
+ 2u
3
u
2
+ 3a + 6u + 3,
u
8
3u
7
+ 6u
6
5u
5
+ 4u
4
+ u
3
+ 3u + 3i
I
u
2
= h−2u
9
+ 10u
8
24u
7
+ 38u
6
49u
5
+ 52u
4
32u
3
u
2
+ b + 14u 5,
5u
9
23u
8
+ 55u
7
86u
6
+ 112u
5
116u
4
+ 73u
3
+ 2u
2
+ a 29u + 11,
u
10
5u
9
+ 13u
8
22u
7
+ 30u
6
33u
5
+ 25u
4
6u
3
6u
2
+ 5u 1i
I
u
3
= h−u
5
2u
4
4u
3
3u
2
+ b 2u + 1, u
9
4u
8
11u
7
19u
6
25u
5
22u
4
14u
3
5u
2
+ a u 1,
u
10
+ 4u
9
+ 11u
8
+ 19u
7
+ 25u
6
+ 21u
5
+ 12u
4
+ u
3
2u
2
u + 1i
I
u
4
= h−3u
3
au 5u
2
+ b 3u + 4, 4u
3
a + 7u
2
a + u
3
+ a
2
+ 5au + 2u
2
5a + u 2, u
4
+ u
3
2u + 1i
I
u
5
= h−au + b + u + 1, a
2
+ au 2u 1, u
2
+ u + 1i
I
u
6
= hb 2, a + 1, u + 1i
I
u
7
= hb + 1, a 2, u + 1i
I
u
8
= hb 1, a + 1, u + 1i
I
v
1
= ha, b 1, v 1i
* 9 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
6
+ u
5
2u
4
2u
2
+ b 2u 1, u
7
+ 3u
6
+ · · · + 3a + 3, u
8
3u
7
+ 6u
6
5u
5
+ 4u
4
+ u
3
+ 3u + 3i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
9
=
1
3
u
7
u
6
+ ··· 2u 1
u
6
u
5
+ 2u
4
+ 2u
2
+ 2u + 1
a
8
=
1
3
u
7
+
4
3
u
4
2
3
u
3
+
7
3
u
2
u
6
u
5
+ 2u
4
+ 2u
2
+ 2u + 1
a
7
=
2
3
u
7
+ 2u
6
+ ··· + 2u + 2
u
7
u
5
2u
4
3u
3
3u
2
4u 2
a
6
=
2
3
u
7
+ u
6
+ ···
2
3
u
2
+ 1
u
6
+ u
5
2u
4
u
3
u
2
3u 2
a
11
=
1
3
u
7
4
3
u
4
+ ···
4
3
u
2
u
u
7
2u
6
+ 3u
5
u
4
+ u
3
+ u
2
1
a
10
=
2
3
u
7
2u
6
+ ··· u 1
u
7
2u
6
+ 3u
5
u
4
+ u
3
+ u
2
1
a
5
=
2
3
u
7
+ 2u
6
+ ··· + 2u + 2
2u
7
+ 3u
6
4u
5
2u
3
2u
2
+ 1
a
2
=
2
3
u
7
u
6
+ ··· + u + 1
u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 4u + 2
a
2
=
2
3
u
7
u
6
+ ··· + u + 1
u
6
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 4u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
7
+ 6u
6
12u
5
+ 12u
4
8u
3
+ 2u
2
6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
u
7
+ 9u
6
4u
5
+ 26u
4
2u
3
+ 28u
2
+ 10
c
2
, c
5
, c
8
c
11
u
8
u
7
4u
6
+ 5u
5
+ 4u
4
3u
3
+ 4u
2
u + 1
c
3
, c
6
, c
9
u
8
3u
7
+ 6u
6
5u
5
+ 4u
4
+ u
3
+ 3u + 3
c
4
, c
10
u
8
+ 6u
7
+ 20u
6
+ 42u
5
+ 68u
4
+ 82u
3
+ 74u
2
+ 32u + 8
c
7
u
8
+ 2u
7
+ 9u
6
+ 10u
5
+ 31u
4
+ 30u
3
+ 27u
2
+ 26u + 12
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 17y
7
+ ··· + 560y + 100
c
2
, c
5
, c
8
c
11
y
8
9y
7
+ 34y
6
55y
5
+ 14y
4
+ 25y
3
+ 18y
2
+ 7y + 1
c
3
, c
6
, c
9
y
8
+ 3y
7
+ 14y
6
+ 29y
5
+ 50y
4
+ 65y
3
+ 18y
2
9y + 9
c
4
, c
10
y
8
+ 4y
7
+ 32y
6
+ 120y
5
+ 328y
4
+ 972y
3
+ 1316y
2
+ 160y + 64
c
7
y
8
+ 14y
7
+ 103y
6
+ 392y
5
+ 767y
4
+ 470y
3
87y
2
28y + 144
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.010055 + 1.117600I
a = 0.471916 0.347611I
b = 0.383744 + 0.530909I
5.09476 + 1.30932I 1.82878 5.39060I
u = 0.010055 1.117600I
a = 0.471916 + 0.347611I
b = 0.383744 0.530909I
5.09476 1.30932I 1.82878 + 5.39060I
u = 0.576935 + 0.295827I
a = 0.469090 0.674407I
b = 0.071127 0.527859I
0.769995 + 1.158600I 7.36601 5.92276I
u = 0.576935 0.295827I
a = 0.469090 + 0.674407I
b = 0.071127 + 0.527859I
0.769995 1.158600I 7.36601 + 5.92276I
u = 0.97820 + 1.19005I
a = 0.587535 + 0.812766I
b = 1.54196 0.09585I
10.45920 2.83405I 9.78328 + 2.02620I
u = 0.97820 1.19005I
a = 0.587535 0.812766I
b = 1.54196 + 0.09585I
10.45920 + 2.83405I 9.78328 2.02620I
u = 1.08868 + 1.10558I
a = 1.090360 0.490500I
b = 1.72934 0.67148I
11.1373 13.1502I 9.02192 + 6.51668I
u = 1.08868 1.10558I
a = 1.090360 + 0.490500I
b = 1.72934 + 0.67148I
11.1373 + 13.1502I 9.02192 6.51668I
5
II.
I
u
2
= h−2u
9
+10u
8
+· · ·+b5, 5u
9
23u
8
+· · ·+a+11, u
10
5u
9
+· · ·+5u1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
9
=
5u
9
+ 23u
8
+ ··· + 29u 11
2u
9
10u
8
+ 24u
7
38u
6
+ 49u
5
52u
4
+ 32u
3
+ u
2
14u + 5
a
8
=
3u
9
+ 13u
8
31u
7
+ 48u
6
63u
5
+ 64u
4
41u
3
u
2
+ 15u 6
2u
9
10u
8
+ 24u
7
38u
6
+ 49u
5
52u
4
+ 32u
3
+ u
2
14u + 5
a
7
=
3u
9
+ 15u
8
38u
7
+ 61u
6
80u
5
+ 85u
4
58u
3
+ u
2
+ 22u 9
u
9
+ 3u
8
3u
7
+ u
6
4u
4
+ 13u
3
8u
2
4u + 3
a
6
=
4u
9
+ 17u
8
39u
7
+ 58u
6
75u
5
+ 74u
4
42u
3
9u
2
+ 17u 5
2u
9
9u
8
+ 22u
7
34u
6
+ 44u
5
45u
4
+ 29u
3
+ 3u
2
13u + 4
a
11
=
2u
9
9u
8
+ 21u
7
32u
6
+ 42u
5
43u
4
+ 26u
3
+ 2u
2
8u + 5
u
9
+ 5u
8
12u
7
+ 18u
6
23u
5
+ 24u
4
14u
3
4u
2
+ 6u 2
a
10
=
u
9
4u
8
+ 9u
7
14u
6
+ 19u
5
19u
4
+ 12u
3
2u
2
2u + 3
u
9
+ 5u
8
12u
7
+ 18u
6
23u
5
+ 24u
4
14u
3
4u
2
+ 6u 2
a
5
=
4u
9
+ 17u
8
38u
7
+ 56u
6
72u
5
+ 71u
4
38u
3
9u
2
+ 15u 4
u
9
7u
8
+ 19u
7
31u
6
+ 40u
5
45u
4
+ 31u
3
+ 2u
2
13u + 4
a
2
=
u
7
3u
6
+ 5u
5
6u
4
+ 8u
3
5u
2
u + 2
u
9
+ 4u
8
8u
7
+ 11u
6
14u
5
+ 13u
4
4u
3
3u
2
+ 3u 1
a
2
=
u
7
3u
6
+ 5u
5
6u
4
+ 8u
3
5u
2
u + 2
u
9
+ 4u
8
8u
7
+ 11u
6
14u
5
+ 13u
4
4u
3
3u
2
+ 3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 7u
9
+ 30u
8
69u
7
+ 104u
6
134u
5
+ 134u
4
76u
3
14u
2
+ 35u 16
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
+ 2u
3
2u
2
u + 1)
2
c
2
, c
5
, c
8
c
11
u
10
u
9
6u
8
+ 6u
7
+ 15u
6
19u
5
10u
4
+ 17u
3
u + 1
c
3
, c
6
, c
9
u
10
5u
9
+ 13u
8
22u
7
+ 30u
6
33u
5
+ 25u
4
6u
3
6u
2
+ 5u 1
c
4
, c
10
(u
5
+ 4u
4
+ 9u
3
+ 11u
2
+ 10u + 4)
2
c
7
(u
5
u
4
+ 5u
3
2u
2
2u + 3)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
+ 4y
4
+ 2y
3
8y
2
+ 5y 1)
2
c
2
, c
5
, c
8
c
11
y
10
13y
9
+ ··· y + 1
c
3
, c
6
, c
9
y
10
+ y
9
+ 9y
8
+ 16y
7
+ 26y
6
+ 39y
5
+ 63y
4
66y
3
+ 46y
2
13y + 1
c
4
, c
10
(y
5
+ 2y
4
+ 13y
3
+ 27y
2
+ 12y 16)
2
c
7
(y
5
+ 9y
4
+ 17y
3
18y
2
+ 16y 9)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.625622 + 0.371117I
a = 1.85638 0.01798I
b = 1.168060 0.677685I
2.23236 3.66584I 2.77098 1.99903I
u = 0.625622 0.371117I
a = 1.85638 + 0.01798I
b = 1.168060 + 0.677685I
2.23236 + 3.66584I 2.77098 + 1.99903I
u = 0.347234 + 1.335500I
a = 0.191634 0.192957I
b = 0.191152 0.322929I
2.23236 + 3.66584I 2.77098 + 1.99903I
u = 0.347234 1.335500I
a = 0.191634 + 0.192957I
b = 0.191152 + 0.322929I
2.23236 3.66584I 2.77098 1.99903I
u = 0.531946
a = 0.830218
b = 0.441631
1.48837 7.29890
u = 1.14606 + 0.92119I
a = 1.184760 + 0.383544I
b = 1.71113 + 0.65182I
11.35780 4.96850I 10.07956 + 2.53316I
u = 1.14606 0.92119I
a = 1.184760 0.383544I
b = 1.71113 0.65182I
11.35780 + 4.96850I 10.07956 2.53316I
u = 1.16790 + 1.05893I
a = 0.714063 0.714867I
b = 1.59095 + 0.07875I
11.35780 + 4.96850I 10.07956 2.53316I
u = 1.16790 1.05893I
a = 0.714063 + 0.714867I
b = 1.59095 0.07875I
11.35780 4.96850I 10.07956 + 2.53316I
u = 0.347235
a = 2.98485
b = 1.03645
1.48837 7.29890
9
III. I
u
3
=
h−u
5
2u
4
4u
3
3u
2
+b2u+1, u
9
4u
8
+· · ·+a1, u
10
+4u
9
+· · ·u+1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
9
=
u
9
+ 4u
8
+ 11u
7
+ 19u
6
+ 25u
5
+ 22u
4
+ 14u
3
+ 5u
2
+ u + 1
u
5
+ 2u
4
+ 4u
3
+ 3u
2
+ 2u 1
a
8
=
u
9
+ 4u
8
+ 11u
7
+ 19u
6
+ 26u
5
+ 24u
4
+ 18u
3
+ 8u
2
+ 3u
u
5
+ 2u
4
+ 4u
3
+ 3u
2
+ 2u 1
a
7
=
u
9
+ 4u
8
+ 10u
7
+ 16u
6
+ 19u
5
+ 15u
4
+ 9u
3
+ 4u
2
+ 2u + 1
u
9
+ 3u
8
+ 7u
7
+ 9u
6
+ 10u
5
+ 6u
4
+ 5u
3
+ 2u
2
+ 2u 1
a
6
=
u
8
4u
7
11u
6
18u
5
22u
4
15u
3
6u
2
+ 3u + 2
u
7
3u
6
6u
5
6u
4
4u
3
+ u
2
+ 2u
a
11
=
u
7
+ 3u
6
+ 7u
5
+ 9u
4
+ 9u
3
+ 3u
2
3
u
8
+ 3u
7
+ 7u
6
+ 9u
5
+ 9u
4
+ 3u
3
2u
a
10
=
u
8
+ 4u
7
+ 10u
6
+ 16u
5
+ 18u
4
+ 12u
3
+ 3u
2
2u 3
u
8
+ 3u
7
+ 7u
6
+ 9u
5
+ 9u
4
+ 3u
3
2u
a
5
=
u
8
4u
7
11u
6
18u
5
22u
4
15u
3
5u
2
+ 4u + 3
u
7
3u
6
6u
5
7u
4
5u
3
+ 2u
a
2
=
u
9
+ 5u
8
+ 14u
7
+ 26u
6
+ 34u
5
+ 30u
4
+ 15u
3
6u 3
u
9
+ 4u
8
+ 10u
7
+ 16u
6
+ 18u
5
+ 12u
4
+ 3u
3
3u
2
2u
a
2
=
u
9
+ 5u
8
+ 14u
7
+ 26u
6
+ 34u
5
+ 30u
4
+ 15u
3
6u 3
u
9
+ 4u
8
+ 10u
7
+ 16u
6
+ 18u
5
+ 12u
4
+ 3u
3
3u
2
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
9
+ u
8
+ 4u
7
+ 16u
6
+ 20u
5
+ 28u
4
+ 12u
3
+ 12u
2
3u 5
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 5u
8
+ 8u
6
+ 3u
4
+ 2u
2
+ 4
c
2
u
10
2u
8
2u
7
+ u
6
+ u
5
+ 5u
4
+ 2u
3
2u
2
u + 1
c
3
, c
9
u
10
+ 4u
9
+ 11u
8
+ 19u
7
+ 25u
6
+ 21u
5
+ 12u
4
+ u
3
2u
2
u + 1
c
4
, c
10
u
10
+ 4u
8
+ u
6
7u
4
2u
2
+ 4
c
5
, c
8
, c
11
u
10
2u
8
+ 2u
7
+ u
6
u
5
+ 5u
4
2u
3
2u
2
+ u + 1
c
6
u
10
4u
9
+ 11u
8
19u
7
+ 25u
6
21u
5
+ 12u
4
u
3
2u
2
+ u + 1
c
7
(u
5
u
4
+ 3u
3
+ 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
+ 2y + 4)
2
c
2
, c
5
, c
8
c
11
y
10
4y
9
+ 6y
8
+ 2y
7
19y
6
+ 27y
5
+ 9y
4
20y
3
+ 18y
2
5y + 1
c
3
, c
6
, c
9
y
10
+ 6y
9
+ ··· 5y + 1
c
4
, c
10
(y
5
+ 4y
4
+ y
3
7y
2
2y + 4)
2
c
7
(y
5
+ 5y
4
+ 9y
3
+ 2y
2
1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.731699 + 0.572220I
a = 1.48078 + 0.14546I
b = 1.166730 + 0.740897I
2.01963 + 4.25086I 7.08888 9.27894I
u = 0.731699 0.572220I
a = 1.48078 0.14546I
b = 1.166730 0.740897I
2.01963 4.25086I 7.08888 + 9.27894I
u = 0.344685 + 1.213160I
a = 0.136245 + 0.613767I
b = 0.697636 0.376843I
4.38002 7.67593 + 0.I
u = 0.344685 1.213160I
a = 0.136245 0.613767I
b = 0.697636 + 0.376843I
4.38002 7.67593 + 0.I
u = 0.23712 + 1.40919I
a = 0.238288 0.297862I
b = 0.476249 0.265165I
2.01963 + 4.25086I 7.08888 9.27894I
u = 0.23712 1.40919I
a = 0.238288 + 0.297862I
b = 0.476249 + 0.265165I
2.01963 4.25086I 7.08888 + 9.27894I
u = 1.04039 + 1.04611I
a = 0.849900 0.531699I
b = 1.44044 0.33592I
4.20964 + 3.82188I 5.57316 2.67833I
u = 1.04039 1.04611I
a = 0.849900 + 0.531699I
b = 1.44044 + 0.33592I
4.20964 3.82188I 5.57316 + 2.67833I
u = 0.353890 + 0.196697I
a = 1.24365 + 2.50355I
b = 0.052327 + 1.130600I
4.20964 3.82188I 5.57316 + 2.67833I
u = 0.353890 0.196697I
a = 1.24365 2.50355I
b = 0.052327 1.130600I
4.20964 + 3.82188I 5.57316 2.67833I
13
IV.
I
u
4
= h−3u
3
au 5u
2
+ b 3u + 4, 4u
3
a + u
3
+ · · · 5a 2, u
4
+ u
3
2u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
9
=
a
3u
3
+ au + 5u
2
+ 3u 4
a
8
=
3u
3
+ au + 5u
2
+ a + 3u 4
3u
3
+ au + 5u
2
+ 3u 4
a
7
=
u
3
a u
2
a u
3
2u
2
+ a u + 2
u
3
a + 2u
2
a + 4u
3
+ 7u
2
+ 5u 7
a
6
=
2u
3
a 3u
2
a u
3
2au 2u
2
+ 2a u + 2
au + u
2
+ a + 2u
a
11
=
3u
3
a 5u
2
a u
3
3au u
2
+ 4a + 1
1
a
10
=
3u
3
a 5u
2
a u
3
3au u
2
+ 4a + 2
1
a
5
=
3u
3
a 5u
2
a u
3
3au u
2
+ 4a + 3
1
a
2
=
2u
3
a 3u
2
a u
3
2au 3u
2
+ 2a 3u + 1
u
3
a + 2u
2
a + au 2u
2
2a u 1
a
2
=
2u
3
a 3u
2
a u
3
2au 3u
2
+ 2a 3u + 1
u
3
a + 2u
2
a + au 2u
2
2a u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
3
+ 16u
2
+ 8u 30
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ u
3
+ 6u
2
+ 4u + 7)
2
c
2
, c
5
, c
8
c
11
u
8
+ u
7
+ u
6
+ u
5
14u
4
11u
3
+ 25u
2
+ 4u + 1
c
3
, c
6
, c
9
(u
4
+ u
3
2u + 1)
2
c
4
, c
10
(u 1)
8
c
7
(u
4
+ 9u
2
+ 6u + 12)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ 11y
3
+ 42y
2
+ 68y + 49)
2
c
2
, c
5
, c
8
c
11
y
8
+ y
7
29y
6
+ 43y
5
+ 262y
4
827y
3
+ 685y
2
+ 34y + 1
c
3
, c
6
, c
9
(y
4
y
3
+ 6y
2
4y + 1)
2
c
4
, c
10
(y 1)
8
c
7
(y
4
+ 18y
3
+ 105y
2
+ 180y + 144)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.621964 + 0.187730I
a = 0.196231 0.222403I
b = 0.06811 + 2.18939I
4.93480 4.05977I 18.0000 + 6.9282I
u = 0.621964 + 0.187730I
a = 1.07414 3.19591I
b = 0.080297 + 0.175165I
4.93480 4.05977I 18.0000 + 6.9282I
u = 0.621964 0.187730I
a = 0.196231 + 0.222403I
b = 0.06811 2.18939I
4.93480 + 4.05977I 18.0000 6.9282I
u = 0.621964 0.187730I
a = 1.07414 + 3.19591I
b = 0.080297 0.175165I
4.93480 + 4.05977I 18.0000 6.9282I
u = 1.12196 + 1.05376I
a = 0.740048 0.475381I
b = 1.68284 0.47999I
4.93480 + 4.05977I 18.0000 6.9282I
u = 1.12196 + 1.05376I
a = 1.010420 + 0.521174I
b = 1.331240 + 0.246470I
4.93480 + 4.05977I 18.0000 6.9282I
u = 1.12196 1.05376I
a = 0.740048 + 0.475381I
b = 1.68284 + 0.47999I
4.93480 4.05977I 18.0000 + 6.9282I
u = 1.12196 1.05376I
a = 1.010420 0.521174I
b = 1.331240 0.246470I
4.93480 4.05977I 18.0000 + 6.9282I
17
V. I
u
5
= h−au + b + u + 1, a
2
+ au 2u 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u + 1
a
9
=
a
au u 1
a
8
=
au + a u 1
au u 1
a
7
=
au + a u
au
a
6
=
2au + a u
a + 1
a
11
=
au + a u 2
1
a
10
=
au + a u 1
1
a
5
=
au + a u
1
a
2
=
2au + a 2u
au + u + 1
a
2
=
2au + a 2u
au + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 10
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
3u
3
+ 4u
2
+ 1
c
2
, c
5
, c
8
c
11
u
4
u
3
2u
2
+ 3
c
3
, c
6
, c
9
(u
2
+ u + 1)
2
c
4
, c
7
, c
10
(u 1)
4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
y
3
+ 18y
2
+ 8y + 1
c
2
, c
5
, c
8
c
11
y
4
5y
3
+ 10y
2
12y + 9
c
3
, c
6
, c
9
(y
2
+ y + 1)
2
c
4
, c
7
, c
10
(y 1)
4
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.085370 + 0.474096I
b = 1.45326 0.16311I
1.64493 + 4.05977I 6.00000 6.92820I
u = 0.500000 + 0.866025I
a = 0.58537 1.34012I
b = 0.953264 0.702911I
1.64493 + 4.05977I 6.00000 6.92820I
u = 0.500000 0.866025I
a = 1.085370 0.474096I
b = 1.45326 + 0.16311I
1.64493 4.05977I 6.00000 + 6.92820I
u = 0.500000 0.866025I
a = 0.58537 + 1.34012I
b = 0.953264 + 0.702911I
1.64493 4.05977I 6.00000 + 6.92820I
21
VI. I
u
6
= hb 2, a + 1, u + 1i
(i) Arc colorings
a
1
=
0
1
a
4
=
1
0
a
3
=
1
1
a
9
=
1
2
a
8
=
1
2
a
7
=
2
5
a
6
=
1
3
a
11
=
1
1
a
10
=
0
1
a
5
=
1
1
a
2
=
1
3
a
2
=
1
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
9
u + 1
c
2
, c
5
, c
8
u + 2
c
4
, c
10
, c
11
u 1
c
7
u + 3
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
9
, c
10
c
11
y 1
c
2
, c
5
, c
8
y 4
c
7
y 9
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 2.00000
4.93480 18.0000
25
VII. I
u
7
= hb + 1, a 2, u + 1i
(i) Arc colorings
a
1
=
0
1
a
4
=
1
0
a
3
=
1
1
a
9
=
2
1
a
8
=
1
1
a
7
=
1
1
a
6
=
1
0
a
11
=
4
1
a
10
=
3
1
a
5
=
2
1
a
2
=
1
0
a
2
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 18
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
9
u + 1
c
2
, c
4
, c
5
c
8
, c
10
u 1
c
7
u
c
11
u + 2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
8
, c
9
, c
10
y 1
c
7
y
c
11
y 4
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
4.93480 18.0000
29
VIII. I
u
8
= hb 1, a + 1, u + 1i
(i) Arc colorings
a
1
=
0
1
a
4
=
1
0
a
3
=
1
1
a
9
=
1
1
a
8
=
0
1
a
7
=
1
2
a
6
=
0
1
a
11
=
1
0
a
10
=
1
0
a
5
=
1
0
a
2
=
0
1
a
2
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
10
u
c
2
, c
6
u 1
c
3
, c
5
, c
7
c
8
, c
9
, c
11
u + 1
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
10
y
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
9
, c
11
y 1
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
3.28987 12.0000
33
IX. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
1
0
a
3
=
1
0
a
9
=
0
1
a
8
=
1
1
a
7
=
0
1
a
6
=
0
1
a
11
=
1
1
a
10
=
0
1
a
5
=
1
1
a
2
=
0
1
a
2
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
u + 1
c
3
, c
6
, c
9
u
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
10
, c
11
y 1
c
3
, c
6
, c
9
y
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
37
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u + 1)
3
(u
4
3u
3
+ 4u
2
+ 1)(u
4
+ u
3
+ 6u
2
+ 4u + 7)
2
· (u
5
+ 2u
3
2u
2
u + 1)
2
· (u
8
u
7
+ 9u
6
4u
5
+ 26u
4
2u
3
+ 28u
2
+ 10)
· (u
10
+ 5u
8
+ 8u
6
+ 3u
4
+ 2u
2
+ 4)
c
2
(u 1)
2
(u + 1)(u + 2)(u
4
u
3
2u
2
+ 3)
· (u
8
u
7
4u
6
+ 5u
5
+ 4u
4
3u
3
+ 4u
2
u + 1)
· (u
8
+ u
7
+ u
6
+ u
5
14u
4
11u
3
+ 25u
2
+ 4u + 1)
· (u
10
2u
8
2u
7
+ u
6
+ u
5
+ 5u
4
+ 2u
3
2u
2
u + 1)
· (u
10
u
9
6u
8
+ 6u
7
+ 15u
6
19u
5
10u
4
+ 17u
3
u + 1)
c
3
, c
9
u(u + 1)
3
(u
2
+ u + 1)
2
(u
4
+ u
3
2u + 1)
2
· (u
8
3u
7
+ 6u
6
5u
5
+ 4u
4
+ u
3
+ 3u + 3)
· (u
10
5u
9
+ 13u
8
22u
7
+ 30u
6
33u
5
+ 25u
4
6u
3
6u
2
+ 5u 1)
· (u
10
+ 4u
9
+ 11u
8
+ 19u
7
+ 25u
6
+ 21u
5
+ 12u
4
+ u
3
2u
2
u + 1)
c
4
, c
10
u(u 1)
14
(u + 1)(u
5
+ 4u
4
+ 9u
3
+ 11u
2
+ 10u + 4)
2
· (u
8
+ 6u
7
+ 20u
6
+ 42u
5
+ 68u
4
+ 82u
3
+ 74u
2
+ 32u + 8)
· (u
10
+ 4u
8
+ u
6
7u
4
2u
2
+ 4)
c
5
, c
8
, c
11
(u 1)(u + 1)
2
(u + 2)(u
4
u
3
2u
2
+ 3)
· (u
8
u
7
4u
6
+ 5u
5
+ 4u
4
3u
3
+ 4u
2
u + 1)
· (u
8
+ u
7
+ u
6
+ u
5
14u
4
11u
3
+ 25u
2
+ 4u + 1)
· (u
10
2u
8
+ 2u
7
+ u
6
u
5
+ 5u
4
2u
3
2u
2
+ u + 1)
· (u
10
u
9
6u
8
+ 6u
7
+ 15u
6
19u
5
10u
4
+ 17u
3
u + 1)
c
6
u(u 1)(u + 1)
2
(u
2
+ u + 1)
2
(u
4
+ u
3
2u + 1)
2
· (u
8
3u
7
+ 6u
6
5u
5
+ 4u
4
+ u
3
+ 3u + 3)
· (u
10
5u
9
+ 13u
8
22u
7
+ 30u
6
33u
5
+ 25u
4
6u
3
6u
2
+ 5u 1)
· (u
10
4u
9
+ 11u
8
19u
7
+ 25u
6
21u
5
+ 12u
4
u
3
2u
2
+ u + 1)
c
7
u(u 1)
4
(u + 1)
2
(u + 3)(u
4
+ 9u
2
+ 6u + 12)
2
(u
5
u
4
+ 3u
3
+ 1)
2
· (u
5
u
4
+ 5u
3
2u
2
2u + 3)
2
· (u
8
+ 2u
7
+ 9u
6
+ 10u
5
+ 31u
4
+ 30u
3
+ 27u
2
+ 26u + 12)
38
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y 1)
3
(y
4
y
3
+ 18y
2
+ 8y + 1)(y
4
+ 11y
3
+ 42y
2
+ 68y + 49)
2
· (y
5
+ 4y
4
+ 2y
3
8y
2
+ 5y 1)
2
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
+ 2y + 4)
2
· (y
8
+ 17y
7
+ ··· + 560y + 100)
c
2
, c
5
, c
8
c
11
(y 4)(y 1)
3
(y
4
5y
3
+ 10y
2
12y + 9)
· (y
8
9y
7
+ 34y
6
55y
5
+ 14y
4
+ 25y
3
+ 18y
2
+ 7y + 1)
· (y
8
+ y
7
29y
6
+ 43y
5
+ 262y
4
827y
3
+ 685y
2
+ 34y + 1)
· (y
10
13y
9
+ ··· y + 1)
· (y
10
4y
9
+ 6y
8
+ 2y
7
19y
6
+ 27y
5
+ 9y
4
20y
3
+ 18y
2
5y + 1)
c
3
, c
6
, c
9
y(y 1)
3
(y
2
+ y + 1)
2
(y
4
y
3
+ 6y
2
4y + 1)
2
· (y
8
+ 3y
7
+ 14y
6
+ 29y
5
+ 50y
4
+ 65y
3
+ 18y
2
9y + 9)
· (y
10
+ y
9
+ 9y
8
+ 16y
7
+ 26y
6
+ 39y
5
+ 63y
4
66y
3
+ 46y
2
13y + 1)
· (y
10
+ 6y
9
+ ··· 5y + 1)
c
4
, c
10
y(y 1)
15
(y
5
+ 2y
4
+ 13y
3
+ 27y
2
+ 12y 16)
2
· (y
5
+ 4y
4
+ y
3
7y
2
2y + 4)
2
· (y
8
+ 4y
7
+ 32y
6
+ 120y
5
+ 328y
4
+ 972y
3
+ 1316y
2
+ 160y + 64)
c
7
y(y 9)(y 1)
6
(y
4
+ 18y
3
+ 105y
2
+ 180y + 144)
2
· (y
5
+ 5y
4
+ 9y
3
+ 2y
2
1)
2
(y
5
+ 9y
4
+ 17y
3
18y
2
+ 16y 9)
2
· (y
8
+ 14y
7
+ 103y
6
+ 392y
5
+ 767y
4
+ 470y
3
87y
2
28y + 144)
39