11n
166
(K11n
166
)
A knot diagram
1
Linearized knot diagam
5 7 1 10 2 9 2 11 4 6 7
Solving Sequence
1,5 2,7
3 6 8 11 9 10 4
c
1
c
2
c
5
c
7
c
11
c
8
c
10
c
4
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.30687 × 10
68
u
41
1.54062 × 10
68
u
40
+ ··· + 9.86366 × 10
67
b + 1.76058 × 10
68
,
2.28329 × 10
67
u
41
9.73388 × 10
67
u
40
+ ··· + 9.86366 × 10
67
a + 5.08435 × 10
68
,
u
42
2u
41
+ ··· 12u 1i
I
u
2
= h−33u
12
73u
11
+ ··· + 23b 41, 242u
12
589u
11
+ ··· + 23a 362,
u
13
+ 3u
12
+ 2u
11
3u
10
9u
9
9u
8
+ 5u
7
+ 18u
6
+ 7u
5
9u
4
9u
3
+ 3u + 1i
* 2 irreducible components of dim
C
= 0, with total 55 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.31 × 10
68
u
41
1.54 × 10
68
u
40
+ · · · + 9.86 × 10
67
b + 1.76 ×
10
68
, 2.28 × 10
67
u
41
9.73 × 10
67
u
40
+ · · · + 9.86 × 10
67
a + 5.08 ×
10
68
, u
42
2u
41
+ · · · 12u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
7
=
0.231485u
41
+ 0.986842u
40
+ ··· + 194.921u 5.15463
1.32493u
41
+ 1.56192u
40
+ ··· 20.7796u 1.78491
a
3
=
5.28014u
41
6.60175u
40
+ ··· + 194.483u + 34.5032
0.411012u
41
+ 0.388919u
40
+ ··· 0.134181u 0.550999
a
6
=
u
u
3
+ u
a
8
=
2.74943u
41
1.78847u
40
+ ··· + 233.329u 1.91990
0.549437u
41
0.604447u
40
+ ··· + 8.86516u + 0.475658
a
11
=
3.86650u
41
+ 4.37940u
40
+ ··· 154.682u 24.8689
1.84296u
41
+ 2.51664u
40
+ ··· 43.9754u 2.80259
a
9
=
10.3413u
41
+ 13.9461u
40
+ ··· 201.572u 32.5039
7.39043u
41
10.4148u
40
+ ··· + 159.817u + 12.0772
a
10
=
2.07285u
41
+ 1.91194u
40
+ ··· 116.180u 21.9484
2.88801u
41
+ 4.05483u
40
+ ··· 67.2450u 4.60324
a
4
=
5.69115u
41
6.99067u
40
+ ··· + 194.617u + 35.0542
0.411012u
41
+ 0.388919u
40
+ ··· 0.134181u 0.550999
a
4
=
5.69115u
41
6.99067u
40
+ ··· + 194.617u + 35.0542
0.411012u
41
+ 0.388919u
40
+ ··· 0.134181u 0.550999
(ii) Obstruction class = 1
(iii) Cusp Shapes = 29.0951u
41
41.2441u
40
+ ··· + 827.490u + 68.4277
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
42
+ 2u
41
+ ··· + 12u 1
c
2
, c
7
u
42
+ u
41
+ ··· + 29u + 151
c
3
u
42
3u
41
+ ··· + 75u + 19
c
4
, c
9
u
42
+ 3u
41
+ ··· + 21u + 13
c
6
u
42
+ 6u
41
+ ··· + 15u + 1
c
8
u
42
6u
41
+ ··· 87352u + 17077
c
10
u
42
2u
41
+ ··· 423u 43
c
11
u
42
+ u
41
+ ··· + 2205u + 297
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
42
30y
41
+ ··· 44y + 1
c
2
, c
7
y
42
57y
41
+ ··· 202275y + 22801
c
3
y
42
61y
41
+ ··· 7753y + 361
c
4
, c
9
y
42
25y
41
+ ··· 2261y + 169
c
6
y
42
2y
41
+ ··· 9y + 1
c
8
y
42
58y
41
+ ··· 2530360008y + 291623929
c
10
y
42
+ 10y
41
+ ··· + 9411y + 1849
c
11
y
42
57y
41
+ ··· 501471y + 88209
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.971644 + 0.228980I
a = 0.660225 0.077093I
b = 0.121229 0.121842I
1.74908 0.43337I 4.63201 + 0.76425I
u = 0.971644 0.228980I
a = 0.660225 + 0.077093I
b = 0.121229 + 0.121842I
1.74908 + 0.43337I 4.63201 0.76425I
u = 0.935799 + 0.492680I
a = 0.995156 + 0.254691I
b = 0.697241 0.562142I
1.54069 + 4.15417I 3.00000 7.39011I
u = 0.935799 0.492680I
a = 0.995156 0.254691I
b = 0.697241 + 0.562142I
1.54069 4.15417I 3.00000 + 7.39011I
u = 0.393155 + 0.800612I
a = 0.149356 0.205071I
b = 0.541363 + 0.329653I
2.76017 1.64933I 1.74728 + 0.60366I
u = 0.393155 0.800612I
a = 0.149356 + 0.205071I
b = 0.541363 0.329653I
2.76017 + 1.64933I 1.74728 0.60366I
u = 1.104400 + 0.249694I
a = 0.436118 0.996945I
b = 0.530412 + 0.326797I
2.78567 0.99125I 11.10311 4.39500I
u = 1.104400 0.249694I
a = 0.436118 + 0.996945I
b = 0.530412 0.326797I
2.78567 + 0.99125I 11.10311 + 4.39500I
u = 1.155180 + 0.226642I
a = 0.752466 + 0.511395I
b = 0.896926 + 1.040480I
1.88826 1.20315I 0
u = 1.155180 0.226642I
a = 0.752466 0.511395I
b = 0.896926 1.040480I
1.88826 + 1.20315I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.17730
a = 2.81430
b = 1.42191
4.47617 5.20530
u = 1.255780 + 0.019663I
a = 2.27463 0.18547I
b = 1.95961 0.66957I
7.36750 2.87143I 0
u = 1.255780 0.019663I
a = 2.27463 + 0.18547I
b = 1.95961 + 0.66957I
7.36750 + 2.87143I 0
u = 1.114120 + 0.594857I
a = 0.017502 0.611763I
b = 0.609070 0.365005I
0.58975 + 6.86368I 0
u = 1.114120 0.594857I
a = 0.017502 + 0.611763I
b = 0.609070 + 0.365005I
0.58975 6.86368I 0
u = 0.514470 + 1.177460I
a = 0.0735393 0.0954487I
b = 1.57588 + 0.26064I
5.82264 2.10553I 0
u = 0.514470 1.177460I
a = 0.0735393 + 0.0954487I
b = 1.57588 0.26064I
5.82264 + 2.10553I 0
u = 1.367560 + 0.254517I
a = 0.890031 + 0.144472I
b = 0.850798 0.662707I
0.09515 + 5.56736I 0
u = 1.367560 0.254517I
a = 0.890031 0.144472I
b = 0.850798 + 0.662707I
0.09515 5.56736I 0
u = 0.574212 + 0.117339I
a = 0.393410 0.999550I
b = 1.252340 0.394572I
4.70197 3.01261I 11.65660 + 2.21081I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.574212 0.117339I
a = 0.393410 + 0.999550I
b = 1.252340 + 0.394572I
4.70197 + 3.01261I 11.65660 2.21081I
u = 0.568925 + 0.051008I
a = 1.46927 0.44701I
b = 1.069300 0.013204I
2.53352 0.05674I 5.88497 7.01523I
u = 0.568925 0.051008I
a = 1.46927 + 0.44701I
b = 1.069300 + 0.013204I
2.53352 + 0.05674I 5.88497 + 7.01523I
u = 0.07204 + 1.42728I
a = 0.086850 1.160690I
b = 0.345695 + 1.176360I
5.55360 0.39636I 0
u = 0.07204 1.42728I
a = 0.086850 + 1.160690I
b = 0.345695 1.176360I
5.55360 + 0.39636I 0
u = 1.48422 + 0.23506I
a = 0.717440 0.244330I
b = 0.52362 1.68426I
1.15694 4.97445I 0
u = 1.48422 0.23506I
a = 0.717440 + 0.244330I
b = 0.52362 + 1.68426I
1.15694 + 4.97445I 0
u = 0.11486 + 1.51372I
a = 0.0321052 + 0.0488945I
b = 2.03791 0.23200I
4.38173 + 6.68735I 0
u = 0.11486 1.51372I
a = 0.0321052 0.0488945I
b = 2.03791 + 0.23200I
4.38173 6.68735I 0
u = 1.47470 + 0.37744I
a = 1.67468 0.56566I
b = 1.90596 + 0.26710I
12.10630 + 7.14794I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.47470 0.37744I
a = 1.67468 + 0.56566I
b = 1.90596 0.26710I
12.10630 7.14794I 0
u = 1.62716
a = 1.69579
b = 2.74174
10.4541 0
u = 1.48967 + 0.67284I
a = 1.32309 0.83780I
b = 1.98195 + 0.65769I
8.8694 14.1954I 0
u = 1.48967 0.67284I
a = 1.32309 + 0.83780I
b = 1.98195 0.65769I
8.8694 + 14.1954I 0
u = 1.45552 + 0.81312I
a = 1.080210 + 0.896892I
b = 1.75516 0.59909I
8.67069 5.62021I 0
u = 1.45552 0.81312I
a = 1.080210 0.896892I
b = 1.75516 + 0.59909I
8.67069 + 5.62021I 0
u = 0.049563 + 0.302088I
a = 1.34651 + 0.47011I
b = 0.315782 + 0.486715I
0.096362 1.232180I 1.37808 + 5.47691I
u = 0.049563 0.302088I
a = 1.34651 0.47011I
b = 0.315782 0.486715I
0.096362 + 1.232180I 1.37808 5.47691I
u = 1.68157 + 0.33743I
a = 1.39696 + 0.40870I
b = 2.25961 0.16660I
11.08320 + 0.67325I 0
u = 1.68157 0.33743I
a = 1.39696 0.40870I
b = 2.25961 + 0.16660I
11.08320 0.67325I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0650964 + 0.0552947I
a = 17.7931 + 18.4218I
b = 0.172689 0.653820I
5.14610 3.90439I 9.21708 + 9.57987I
u = 0.0650964 0.0552947I
a = 17.7931 18.4218I
b = 0.172689 + 0.653820I
5.14610 + 3.90439I 9.21708 9.57987I
9
II. I
u
2
= h−33u
12
73u
11
+ · · · + 23b 41, 242u
12
589u
11
+ · · · + 23a
362, u
13
+ 3u
12
+ · · · + 3u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
7
=
10.5217u
12
+ 25.6087u
11
+ ··· + 23.0870u + 15.7391
1.43478u
12
+ 3.17391u
11
+ ··· + 1.73913u + 1.78261
a
3
=
2.26087u
12
5.30435u
11
+ ··· 3.04348u + 2.13043
0.695652u
12
1.47826u
11
+ ··· 3.78261u 1.65217
a
6
=
u
u
3
+ u
a
8
=
13.1739u
12
+ 32.8696u
11
+ ··· + 28.6957u + 19.9130
2.04348u
12
+ 5.21739u
11
+ ··· + 1.17391u + 2.47826
a
11
=
0.521739u
12
+ 2.60870u
11
+ ··· + 0.0869565u + 3.73913
0.217391u
12
0.0869565u
11
+ ··· + 0.130435u + 0.608696
a
9
=
2.04348u
12
+ 2.21739u
11
+ ··· + 18.1739u + 5.47826
1.73913u
12
+ 5.69565u
11
+ ··· 2.04348u + 1.13043
a
10
=
1.65217u
12
+ 5.26087u
11
+ ··· + 2.60870u + 4.17391
0.826087u
12
1.13043u
11
+ ··· 1.30435u + 0.913043
a
4
=
1.56522u
12
3.82609u
11
+ ··· + 0.739130u + 3.78261
0.695652u
12
1.47826u
11
+ ··· 3.78261u 1.65217
a
4
=
1.56522u
12
3.82609u
11
+ ··· + 0.739130u + 3.78261
0.695652u
12
1.47826u
11
+ ··· 3.78261u 1.65217
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15
23
u
12
17
23
u
11
142
23
u
10
214
23
u
9
218
23
u
8
+
27
23
u
7
+
451
23
u
6
+
459
23
u
5
+
195
23
u
4
+
117
23
u
3
246
23
u
2
492
23
u
387
23
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
13
+ 3u
12
+ ··· + 3u + 1
c
2
u
13
+ 2u
12
+ ··· 2u + 1
c
3
u
13
+ 8u
12
+ ··· 46u 11
c
4
u
13
+ 2u
12
+ ··· 2u 1
c
5
u
13
3u
12
+ ··· + 3u 1
c
6
u
13
+ 7u
12
+ ··· 2u 1
c
7
u
13
2u
12
+ ··· 2u 1
c
8
u
13
+ u
12
+ ··· u 1
c
9
u
13
2u
12
+ ··· 2u + 1
c
10
u
13
+ u
12
+ ··· + 2u 1
c
11
u
13
2u
12
+ ··· 2u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
13
5y
12
+ ··· + 9y 1
c
2
, c
7
y
13
4y
12
+ ··· 8y 1
c
3
y
13
16y
12
+ ··· + 774y 121
c
4
, c
9
y
13
12y
12
+ ··· + 2y 1
c
6
y
13
5y
12
+ ··· 10y 1
c
8
y
13
+ 11y
12
+ ··· 7y 1
c
10
y
13
5y
12
+ ··· + 2y 1
c
11
y
13
8y
12
+ ··· 8y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.059650 + 0.184275I
a = 0.698885 0.288098I
b = 0.410177 0.918523I
1.83033 2.41287I 3.84698 + 4.49416I
u = 1.059650 0.184275I
a = 0.698885 + 0.288098I
b = 0.410177 + 0.918523I
1.83033 + 2.41287I 3.84698 4.49416I
u = 0.798226 + 0.206546I
a = 1.21744 + 0.73252I
b = 0.927123 + 0.095251I
2.67139 0.27850I 30.8698 + 7.4464I
u = 0.798226 0.206546I
a = 1.21744 0.73252I
b = 0.927123 0.095251I
2.67139 + 0.27850I 30.8698 7.4464I
u = 0.489582 + 0.589438I
a = 0.667920 + 0.260518I
b = 1.380850 0.254889I
3.97791 + 3.45840I 2.92129 5.70901I
u = 0.489582 0.589438I
a = 0.667920 0.260518I
b = 1.380850 + 0.254889I
3.97791 3.45840I 2.92129 + 5.70901I
u = 1.198530 + 0.532231I
a = 0.230268 0.024904I
b = 0.245939 0.621339I
1.61052 + 6.86027I 0.95342 5.99617I
u = 1.198530 0.532231I
a = 0.230268 + 0.024904I
b = 0.245939 + 0.621339I
1.61052 6.86027I 0.95342 + 5.99617I
u = 0.576690 + 0.127809I
a = 0.52909 + 4.02030I
b = 0.118700 + 0.564195I
4.79973 3.69557I 8.48018 0.72494I
u = 0.576690 0.127809I
a = 0.52909 4.02030I
b = 0.118700 0.564195I
4.79973 + 3.69557I 8.48018 + 0.72494I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.24005 + 1.43458I
a = 0.211506 1.083560I
b = 0.301086 + 1.145810I
5.52247 0.94388I 1.35646 + 9.06354I
u = 0.24005 1.43458I
a = 0.211506 + 1.083560I
b = 0.301086 1.145810I
5.52247 + 0.94388I 1.35646 9.06354I
u = 1.70605
a = 1.56877
b = 2.76956
10.1961 10.0430
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
13
+ 3u
12
+ ··· + 3u + 1)(u
42
+ 2u
41
+ ··· + 12u 1)
c
2
(u
13
+ 2u
12
+ ··· 2u + 1)(u
42
+ u
41
+ ··· + 29u + 151)
c
3
(u
13
+ 8u
12
+ ··· 46u 11)(u
42
3u
41
+ ··· + 75u + 19)
c
4
(u
13
+ 2u
12
+ ··· 2u 1)(u
42
+ 3u
41
+ ··· + 21u + 13)
c
5
(u
13
3u
12
+ ··· + 3u 1)(u
42
+ 2u
41
+ ··· + 12u 1)
c
6
(u
13
+ 7u
12
+ ··· 2u 1)(u
42
+ 6u
41
+ ··· + 15u + 1)
c
7
(u
13
2u
12
+ ··· 2u 1)(u
42
+ u
41
+ ··· + 29u + 151)
c
8
(u
13
+ u
12
+ ··· u 1)(u
42
6u
41
+ ··· 87352u + 17077)
c
9
(u
13
2u
12
+ ··· 2u + 1)(u
42
+ 3u
41
+ ··· + 21u + 13)
c
10
(u
13
+ u
12
+ ··· + 2u 1)(u
42
2u
41
+ ··· 423u 43)
c
11
(u
13
2u
12
+ ··· 2u 1)(u
42
+ u
41
+ ··· + 2205u + 297)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
13
5y
12
+ ··· + 9y 1)(y
42
30y
41
+ ··· 44y + 1)
c
2
, c
7
(y
13
4y
12
+ ··· 8y 1)(y
42
57y
41
+ ··· 202275y + 22801)
c
3
(y
13
16y
12
+ ··· + 774y 121)(y
42
61y
41
+ ··· 7753y + 361)
c
4
, c
9
(y
13
12y
12
+ ··· + 2y 1)(y
42
25y
41
+ ··· 2261y + 169)
c
6
(y
13
5y
12
+ ··· 10y 1)(y
42
2y
41
+ ··· 9y + 1)
c
8
(y
13
+ 11y
12
+ ··· 7y 1)
· (y
42
58y
41
+ ··· 2530360008y + 291623929)
c
10
(y
13
5y
12
+ ··· + 2y 1)(y
42
+ 10y
41
+ ··· + 9411y + 1849)
c
11
(y
13
8y
12
+ ··· 8y 1)(y
42
57y
41
+ ··· 501471y + 88209)
16