11n
171
(K11n
171
)
A knot diagram
1
Linearized knot diagam
5 8 1 9 1 4 11 2 4 8 7
Solving Sequence
8,11
7
1,4
3 2 6 5 10 9
c
7
c
11
c
3
c
2
c
6
c
5
c
10
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
16
+ 14u
15
+ ··· + 2b 4, u
16
+ 5u
15
+ ··· + 2a + 5, u
17
+ 6u
16
+ ··· 10u 4i
I
u
2
= h38u
5
a
3
19u
5
a
2
+ ··· + 10a 14, 2u
5
a
2
+ 5u
5
a + ··· 9a + 11, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
I
u
3
= h−u
8
+ u
7
5u
6
+ 4u
5
7u
4
+ 5u
3
2u
2
+ b + 3u, u
8
4u
6
u
5
3u
4
3u
3
+ 3u
2
+ a u + 3,
u
9
u
8
+ 6u
7
5u
6
+ 12u
5
8u
4
+ 8u
3
5u
2
1i
* 3 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3u
16
+14u
15
+· · · +2b4, u
16
+5u
15
+· · · +2a+5, u
17
+6u
16
+· · · 10u4i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
1
2
u
16
5
2
u
15
+ ··· + u
5
2
3
2
u
16
7u
15
+ ··· +
11
2
u + 2
a
3
=
1
2
u
16
3
2
u
15
+ ··· + 2u
1
2
3
2
u
16
+ 7u
15
+ ···
11
2
u 4
a
2
=
u
16
+
11
2
u
15
+ ···
7
2
u
9
2
3
2
u
16
+ 7u
15
+ ···
11
2
u 4
a
6
=
3
4
u
16
+ 4u
15
+ ···
15
4
u 3
1
2
u
16
+ 3u
15
+ ···
3
2
u 3
a
5
=
3
4
u
16
+ 4u
15
+ ···
15
4
u 5
1
2
u
16
+ 2u
15
+ ···
3
2
u 1
a
10
=
u
u
a
9
=
1
4
u
16
u
15
+ ··· +
11
4
u
2
+
1
4
u
1
2
u
16
+ 3u
15
+ ···
9
2
u 3
a
9
=
1
4
u
16
u
15
+ ··· +
11
4
u
2
+
1
4
u
1
2
u
16
+ 3u
15
+ ···
9
2
u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
16
+ 21u
15
+ 86u
14
+ 243u
13
+ 565u
12
+ 1065u
11
+ 1695u
10
+
2282u
9
+ 2614u
8
+ 2548u
7
+ 2087u
6
+ 1403u
5
+ 739u
4
+ 258u
3
+ 31u
2
30u 26
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
17
+ 13u
16
+ ··· + 608u + 64
c
2
, c
4
, c
8
c
9
u
17
+ 5u
15
+ ··· + 2u + 1
c
3
, c
6
u
17
u
16
+ ··· 2u + 1
c
7
, c
10
, c
11
u
17
6u
16
+ ··· 10u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
17
+ 7y
16
+ ··· + 25600y 4096
c
2
, c
4
, c
8
c
9
y
17
+ 10y
16
+ ··· + 2y 1
c
3
, c
6
y
17
19y
16
+ ··· + 26y 1
c
7
, c
10
, c
11
y
17
+ 16y
16
+ ··· + 172y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.211807 + 0.989057I
a = 0.005734 + 0.720235I
b = 0.595368 + 0.304010I
2.01657 1.88656I 7.16642 + 4.34239I
u = 0.211807 0.989057I
a = 0.005734 0.720235I
b = 0.595368 0.304010I
2.01657 + 1.88656I 7.16642 4.34239I
u = 0.939675 + 0.221289I
a = 0.144054 + 0.332191I
b = 1.160160 0.774359I
0.01418 + 8.74564I 9.43323 6.21574I
u = 0.939675 0.221289I
a = 0.144054 0.332191I
b = 1.160160 + 0.774359I
0.01418 8.74564I 9.43323 + 6.21574I
u = 0.284641 + 1.111420I
a = 0.49091 1.57082I
b = 0.271257 0.887192I
0.64441 + 2.30767I 10.18608 0.27730I
u = 0.284641 1.111420I
a = 0.49091 + 1.57082I
b = 0.271257 + 0.887192I
0.64441 2.30767I 10.18608 + 0.27730I
u = 0.591453 + 1.005910I
a = 0.743115 + 0.715842I
b = 0.247326 0.243911I
2.42082 3.43267I 8.02158 + 2.98804I
u = 0.591453 1.005910I
a = 0.743115 0.715842I
b = 0.247326 + 0.243911I
2.42082 + 3.43267I 8.02158 2.98804I
u = 0.741532 + 0.257409I
a = 0.268555 0.609503I
b = 1.069590 + 0.137343I
3.15113 + 1.41738I 9.71131 4.88398I
u = 0.741532 0.257409I
a = 0.268555 + 0.609503I
b = 1.069590 0.137343I
3.15113 1.41738I 9.71131 + 4.88398I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.41260 + 1.41870I
a = 0.57836 + 1.72237I
b = 1.61137 + 1.55108I
5.1608 + 13.6066I 5.59446 7.46007I
u = 0.41260 1.41870I
a = 0.57836 1.72237I
b = 1.61137 1.55108I
5.1608 13.6066I 5.59446 + 7.46007I
u = 0.32482 + 1.45291I
a = 0.99147 1.18539I
b = 1.70555 1.12903I
2.38666 + 5.36037I 5.12085 4.62281I
u = 0.32482 1.45291I
a = 0.99147 + 1.18539I
b = 1.70555 + 1.12903I
2.38666 5.36037I 5.12085 + 4.62281I
u = 0.05895 + 1.66246I
a = 0.577246 + 0.085860I
b = 1.142700 + 0.323103I
11.85540 1.51678I 9.69360 + 5.86030I
u = 0.05895 1.66246I
a = 0.577246 0.085860I
b = 1.142700 0.323103I
11.85540 + 1.51678I 9.69360 5.86030I
u = 0.283727
a = 1.07024
b = 0.322697
0.582703 17.1450
6
II. I
u
2
= h38u
5
a
3
19u
5
a
2
+ · · · + 10a 14, 2u
5
a
2
+ 5u
5
a + · · · 9a +
11, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
4.22222a
3
u
5
+ 2.11111a
2
u
5
+ ··· 1.11111a + 1.55556
a
3
=
3.22222a
3
u
5
+ 2.11111a
2
u
5
+ ··· 0.111111a 0.444444
11
9
u
5
a
3
10
9
u
5
a
2
+ ··· +
1
9
a +
13
9
a
2
=
2u
5
a
3
+ u
5
a
2
+ ··· + a
2
+ 1
11
9
u
5
a
3
10
9
u
5
a
2
+ ··· +
1
9
a +
13
9
a
6
=
8
9
u
5
a
3
8
9
u
5
a
2
+ ··· +
13
9
a
4
9
8
9
u
5
a
2
4
9
u
5
+ ··· +
10
9
a
2
+
4
9
a
5
=
5
3
u
5
a
3
16
9
u
5
a
2
+ ··· +
7
3
a
8
9
23
9
u
5
a
3
+
5
3
u
5
a
2
+ ···
7
9
a +
4
3
a
10
=
u
u
a
9
=
10
9
u
5
a
3
10
9
u
5
a
2
+ ···
4
9
a +
4
9
1.22222a
3
u
5
+ 2.33333a
2
u
5
+ ··· 1.11111a 1.33333
a
9
=
10
9
u
5
a
3
10
9
u
5
a
2
+ ···
4
9
a +
4
9
1.22222a
3
u
5
+ 2.33333a
2
u
5
+ ··· 1.11111a 1.33333
(ii) Obstruction class = 1
(iii) Cusp Shapes =
44
9
u
5
a
3
+
40
9
u
5
a
2
+ ···
40
9
a
106
9
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
u + 1)
12
c
2
, c
4
, c
8
c
9
u
24
u
23
+ ··· 26u + 79
c
3
, c
6
u
24
5u
23
+ ··· + 36u + 13
c
7
, c
10
, c
11
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
2
+ y + 1)
12
c
2
, c
4
, c
8
c
9
y
24
+ 15y
23
+ ··· + 53676y + 6241
c
3
, c
6
y
24
5y
23
+ ··· 5352y + 169
c
7
, c
10
, c
11
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0.374038 + 0.292431I
b = 0.837071 0.727051I
2.72528 + 2.02988I 10.26950 3.46410I
u = 0.873214
a = 0.374038 0.292431I
b = 0.837071 + 0.727051I
2.72528 2.02988I 10.26950 + 3.46410I
u = 0.873214
a = 0.021379 + 0.392452I
b = 1.322910 0.114439I
2.72528 + 2.02988I 10.26950 3.46410I
u = 0.873214
a = 0.021379 0.392452I
b = 1.322910 + 0.114439I
2.72528 2.02988I 10.26950 + 3.46410I
u = 0.138835 + 1.234450I
a = 0.541688 + 0.032957I
b = 0.769169 0.336322I
7.89505 0.05747I 2.57572 0.22068I
u = 0.138835 + 1.234450I
a = 1.30626 + 0.70357I
b = 2.42790 + 0.70593I
7.89505 + 4.00229I 2.57572 7.14888I
u = 0.138835 + 1.234450I
a = 0.86980 2.16519I
b = 0.20728 1.55918I
7.89505 + 4.00229I 2.57572 7.14888I
u = 0.138835 + 1.234450I
a = 0.36392 + 2.58238I
b = 0.39780 + 2.68606I
7.89505 0.05747I 2.57572 0.22068I
u = 0.138835 1.234450I
a = 0.541688 0.032957I
b = 0.769169 + 0.336322I
7.89505 + 0.05747I 2.57572 + 0.22068I
u = 0.138835 1.234450I
a = 1.30626 0.70357I
b = 2.42790 0.70593I
7.89505 4.00229I 2.57572 + 7.14888I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.138835 1.234450I
a = 0.86980 + 2.16519I
b = 0.20728 + 1.55918I
7.89505 4.00229I 2.57572 + 7.14888I
u = 0.138835 1.234450I
a = 0.36392 2.58238I
b = 0.39780 2.68606I
7.89505 + 0.05747I 2.57572 + 0.22068I
u = 0.408802 + 1.276380I
a = 0.605131 0.405910I
b = 0.216543 0.031148I
1.23922 2.56224I 6.58114 0.25928I
u = 0.408802 + 1.276380I
a = 0.606056 + 1.218440I
b = 1.35224 + 0.72201I
1.23922 2.56224I 6.58114 0.25928I
u = 0.408802 + 1.276380I
a = 0.76345 + 1.35547I
b = 0.949823 + 0.357497I
1.23922 6.62201I 6.58114 + 6.66892I
u = 0.408802 + 1.276380I
a = 0.06024 1.76254I
b = 0.91937 1.68647I
1.23922 6.62201I 6.58114 + 6.66892I
u = 0.408802 1.276380I
a = 0.605131 + 0.405910I
b = 0.216543 + 0.031148I
1.23922 + 2.56224I 6.58114 + 0.25928I
u = 0.408802 1.276380I
a = 0.606056 1.218440I
b = 1.35224 0.72201I
1.23922 + 2.56224I 6.58114 + 0.25928I
u = 0.408802 1.276380I
a = 0.76345 1.35547I
b = 0.949823 0.357497I
1.23922 + 6.62201I 6.58114 6.66892I
u = 0.408802 1.276380I
a = 0.06024 + 1.76254I
b = 0.91937 + 1.68647I
1.23922 + 6.62201I 6.58114 6.66892I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.413150
a = 1.19455 + 0.88026I
b = 0.07172 1.48991I
4.19595 2.02988I 11.41678 + 3.46410I
u = 0.413150
a = 1.19455 0.88026I
b = 0.07172 + 1.48991I
4.19595 + 2.02988I 11.41678 3.46410I
u = 0.413150
a = 0.05973 + 3.05273I
b = 0.597209 0.331281I
4.19595 + 2.02988I 11.41678 3.46410I
u = 0.413150
a = 0.05973 3.05273I
b = 0.597209 + 0.331281I
4.19595 2.02988I 11.41678 + 3.46410I
12
III. I
u
3
= h−u
8
+ u
7
+ · · · + b + 3u, u
8
4u
6
u
5
3u
4
3u
3
+ 3u
2
+ a
u + 3, u
9
u
8
+ · · · 5u
2
1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
u
8
+ 4u
6
+ u
5
+ 3u
4
+ 3u
3
3u
2
+ u 3
u
8
u
7
+ 5u
6
4u
5
+ 7u
4
5u
3
+ 2u
2
3u
a
3
=
u
7
u
6
+ 5u
5
4u
4
+ 7u
3
5u
2
+ 2u 3
u
8
u
7
+ 5u
6
4u
5
+ 8u
4
5u
3
+ 4u
2
3u
a
2
=
u
8
+ 4u
6
+ u
5
+ 4u
4
+ 2u
3
u
2
u 3
u
8
u
7
+ 5u
6
4u
5
+ 8u
4
5u
3
+ 4u
2
3u
a
6
=
u
6
2u
5
+ 5u
4
7u
3
+ 7u
2
5u + 2
u
8
+ 2u
7
6u
6
+ 8u
5
11u
4
+ 8u
3
6u
2
+ u
a
5
=
u
7
+ 2u
6
6u
5
+ 8u
4
11u
3
+ 9u
2
5u + 2
u
8
+ u
7
5u
6
+ 4u
5
8u
4
+ 4u
3
3u
2
+ u + 1
a
10
=
u
u
a
9
=
2u
8
+ 3u
7
12u
6
+ 14u
5
23u
4
+ 19u
3
13u
2
+ 8u
u
7
u
6
+ 5u
5
4u
4
+ 7u
3
4u
2
+ 2u 2
a
9
=
2u
8
+ 3u
7
12u
6
+ 14u
5
23u
4
+ 19u
3
13u
2
+ 8u
u
7
u
6
+ 5u
5
4u
4
+ 7u
3
4u
2
+ 2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
6
11u
4
+ u
3
10u
2
+ u 3
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 3u
7
3u
6
+ u
5
4u
4
+ 3u
3
+ u 1
c
2
, c
9
u
9
+ 4u
7
u
6
+ 6u
5
2u
4
+ 3u
3
u
2
+ 1
c
3
, c
6
u
9
+ u
8
+ 3u
6
+ 4u
5
+ u
4
+ 3u
3
+ 3u
2
+ 1
c
4
, c
8
u
9
+ 4u
7
+ u
6
+ 6u
5
+ 2u
4
+ 3u
3
+ u
2
1
c
5
u
9
+ 3u
7
+ 3u
6
+ u
5
+ 4u
4
+ 3u
3
+ u + 1
c
7
u
9
u
8
+ 6u
7
5u
6
+ 12u
5
8u
4
+ 8u
3
5u
2
1
c
10
, c
11
u
9
+ u
8
+ 6u
7
+ 5u
6
+ 12u
5
+ 8u
4
+ 8u
3
+ 5u
2
+ 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
9
+ 6y
8
+ 11y
7
+ 3y
6
3y
5
4y
4
+ 5y
3
2y
2
+ y 1
c
2
, c
4
, c
8
c
9
y
9
+ 8y
8
+ 28y
7
+ 53y
6
+ 56y
5
+ 30y
4
+ 7y
3
+ 3y
2
+ 2y 1
c
3
, c
6
y
9
y
8
+ 2y
7
5y
6
+ 4y
5
+ 3y
4
3y
3
11y
2
6y 1
c
7
, c
10
, c
11
y
9
+ 11y
8
+ 50y
7
+ 119y
6
+ 150y
5
+ 76y
4
26y
3
41y
2
10y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.075853 + 1.213420I
a = 0.03154 1.82376I
b = 1.20483 1.57677I
7.92625 + 2.61535I 2.34637 1.10608I
u = 0.075853 1.213420I
a = 0.03154 + 1.82376I
b = 1.20483 + 1.57677I
7.92625 2.61535I 2.34637 + 1.10608I
u = 0.768805
a = 0.376504
b = 1.02947
3.42422 12.1500
u = 0.369661 + 1.332040I
a = 0.614696 + 1.165930I
b = 1.003450 + 0.853584I
0.82219 4.09909I 8.12215 + 4.24227I
u = 0.369661 1.332040I
a = 0.614696 1.165930I
b = 1.003450 0.853584I
0.82219 + 4.09909I 8.12215 4.24227I
u = 0.140254 + 0.400864I
a = 2.50540 + 0.68883I
b = 0.069927 1.023240I
5.21158 1.80390I 1.75250 + 1.15156I
u = 0.140254 0.400864I
a = 2.50540 0.68883I
b = 0.069927 + 1.023240I
5.21158 + 1.80390I 1.75250 1.15156I
u = 0.03796 + 1.59738I
a = 0.452577 + 0.521156I
b = 1.123620 + 0.702862I
12.42610 1.12659I 0.795880 0.970083I
u = 0.03796 1.59738I
a = 0.452577 0.521156I
b = 1.123620 0.702862I
12.42610 + 1.12659I 0.795880 + 0.970083I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
12
(u
9
+ 3u
7
3u
6
+ u
5
4u
4
+ 3u
3
+ u 1)
· (u
17
+ 13u
16
+ ··· + 608u + 64)
c
2
, c
9
(u
9
+ 4u
7
+ ··· u
2
+ 1)(u
17
+ 5u
15
+ ··· + 2u + 1)
· (u
24
u
23
+ ··· 26u + 79)
c
3
, c
6
(u
9
+ u
8
+ ··· + 3u
2
+ 1)(u
17
u
16
+ ··· 2u + 1)
· (u
24
5u
23
+ ··· + 36u + 13)
c
4
, c
8
(u
9
+ 4u
7
+ ··· + u
2
1)(u
17
+ 5u
15
+ ··· + 2u + 1)
· (u
24
u
23
+ ··· 26u + 79)
c
5
(u
2
u + 1)
12
(u
9
+ 3u
7
+ 3u
6
+ u
5
+ 4u
4
+ 3u
3
+ u + 1)
· (u
17
+ 13u
16
+ ··· + 608u + 64)
c
7
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
4
· (u
9
u
8
+ 6u
7
5u
6
+ 12u
5
8u
4
+ 8u
3
5u
2
1)
· (u
17
6u
16
+ ··· 10u + 4)
c
10
, c
11
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
4
· (u
9
+ u
8
+ 6u
7
+ 5u
6
+ 12u
5
+ 8u
4
+ 8u
3
+ 5u
2
+ 1)
· (u
17
6u
16
+ ··· 10u + 4)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
12
)(y
9
+ 6y
8
+ ··· + y 1)
· (y
17
+ 7y
16
+ ··· + 25600y 4096)
c
2
, c
4
, c
8
c
9
(y
9
+ 8y
8
+ 28y
7
+ 53y
6
+ 56y
5
+ 30y
4
+ 7y
3
+ 3y
2
+ 2y 1)
· (y
17
+ 10y
16
+ ··· + 2y 1)(y
24
+ 15y
23
+ ··· + 53676y + 6241)
c
3
, c
6
(y
9
y
8
+ 2y
7
5y
6
+ 4y
5
+ 3y
4
3y
3
11y
2
6y 1)
· (y
17
19y
16
+ ··· + 26y 1)(y
24
5y
23
+ ··· 5352y + 169)
c
7
, c
10
, c
11
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
4
· (y
9
+ 11y
8
+ 50y
7
+ 119y
6
+ 150y
5
+ 76y
4
26y
3
41y
2
10y 1)
· (y
17
+ 16y
16
+ ··· + 172y 16)
18