11n
173
(K11n
173
)
A knot diagram
1
Linearized knot diagam
5 8 1 10 1 4 11 3 7 5 9
Solving Sequence
7,9 5,10
11 1 2 4 3 6 8
c
9
c
10
c
11
c
1
c
4
c
3
c
6
c
8
c
2
, c
5
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h616u
12
+ 178u
11
+ ··· + 1367b + 80, 654u
12
388u
11
+ ··· + 1367a + 1807,
u
13
+ 3u
11
5u
10
+ 10u
9
14u
8
+ 22u
7
29u
6
+ 36u
5
32u
4
+ 24u
3
11u
2
+ 4u + 1i
I
u
2
= h−u
4
+ u
2
+ b 1, a + u 1, u
5
u
3
u
2
+ u + 1i
I
u
3
= h−7.93323 × 10
30
u
27
2.30191 × 10
31
u
26
+ ··· + 1.77551 × 10
32
b 1.02298 × 10
33
,
5.27149 × 10
33
u
27
+ 4.23845 × 10
33
u
26
+ ··· + 4.70510 × 10
34
a 4.74518 × 10
34
, u
28
+ 2u
27
+ ··· + 16u + 53i
I
u
4
= h−89u
13
+ 200u
12
+ ··· + 113b 381, 134u
13
503u
12
+ ··· + 113a 178,
u
14
3u
13
+ 4u
12
4u
11
u
10
+ 2u
9
2u
8
+ u
7
+ 13u
6
7u
5
+ 22u
4
u
3
+ 8u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 60 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h616u
12
+ 178u
11
+ · · · + 1367b + 80, 654u
12
388u
11
+ · · · +
1367a + 1807, u
13
+ 3u
11
+ · · · + 4u + 1i
(i) Arc colorings
a
7
=
0
u
a
9
=
1
0
a
5
=
0.478420u
12
+ 0.283833u
11
+ ··· + 4.18288u 1.32187
0.450622u
12
0.130212u
11
+ ··· + 1.21507u 0.0585223
a
10
=
1
u
2
a
11
=
0.384784u
12
0.637162u
11
+ ··· 4.49817u + 1.19678
u
a
1
=
0.384784u
12
0.637162u
11
+ ··· 5.49817u + 1.19678
u
a
2
=
0.513533u
12
1.24579u
11
+ ··· 9.43672u + 1.60863
0.319678u
12
+ 0.238478u
11
+ ··· 1.62985u + 0.0285296
a
4
=
0.314557u
12
+ 0.422092u
11
+ ··· + 4.74104u 1.66423
0.286028u
12
+ 0.102414u
11
+ ··· + 1.93197u + 0.0797366
a
3
=
0.228237u
12
0.442575u
11
+ ··· + 2.47257u 2.95172
0.163862u
12
+ 0.138259u
11
+ ··· + 0.558157u 0.342356
a
6
=
1.17776u
12
0.931236u
11
+ ··· + 0.425750u 0.789320
0.514996u
12
0.434528u
11
+ ··· 0.754206u 0.352597
a
8
=
0.259693u
12
1.50037u
11
+ ··· 5.35333u 1.61814
0.193855u
12
+ 0.00731529u
11
+ ··· 1.93343u 0.637162
a
8
=
0.259693u
12
1.50037u
11
+ ··· 5.35333u 1.61814
0.193855u
12
+ 0.00731529u
11
+ ··· 1.93343u 0.637162
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2267
1367
u
12
1272
1367
u
11
8216
1367
u
10
+
5428
1367
u
9
22362
1367
u
8
+
19107
1367
u
7
40203
1367
u
6
+
45449
1367
u
5
57148
1367
u
4
+
42609
1367
u
3
31315
1367
u
2
+
5649
1367
u
15793
1367
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
13
+ 8u
12
+ ··· 10u + 4
c
2
, c
4
, c
8
c
10
u
13
8u
11
+ ··· 2u + 2
c
3
, c
6
u
13
2u
12
+ ··· 3u + 1
c
7
u
13
10u
12
+ ··· 40u + 20
c
9
, c
11
u
13
+ 3u
11
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
13
16y
12
+ ··· + 284y 16
c
2
, c
4
, c
8
c
10
y
13
16y
12
+ ··· + 12y 4
c
3
, c
6
y
13
24y
12
+ ··· 7y 1
c
7
y
13
2y
12
+ ··· + 4440y 400
c
9
, c
11
y
13
+ 6y
12
+ ··· + 38y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.949645 + 0.417400I
a = 0.333458 0.234834I
b = 0.346830 + 0.825972I
1.81165 + 1.04217I 4.67201 2.86908I
u = 0.949645 0.417400I
a = 0.333458 + 0.234834I
b = 0.346830 0.825972I
1.81165 1.04217I 4.67201 + 2.86908I
u = 0.654297 + 0.696942I
a = 0.22522 + 2.10852I
b = 0.476213 0.178047I
13.48820 + 1.07762I 12.25276 5.21840I
u = 0.654297 0.696942I
a = 0.22522 2.10852I
b = 0.476213 + 0.178047I
13.48820 1.07762I 12.25276 + 5.21840I
u = 0.326551 + 0.994649I
a = 0.241683 0.736746I
b = 0.03079 1.57197I
4.25079 + 1.54146I 6.85137 4.44536I
u = 0.326551 0.994649I
a = 0.241683 + 0.736746I
b = 0.03079 + 1.57197I
4.25079 1.54146I 6.85137 + 4.44536I
u = 0.003594 + 0.899426I
a = 1.89385 0.60583I
b = 0.370370 0.914227I
5.78882 + 3.81724I 10.21345 4.30874I
u = 0.003594 0.899426I
a = 1.89385 + 0.60583I
b = 0.370370 + 0.914227I
5.78882 3.81724I 10.21345 + 4.30874I
u = 0.80574 + 1.33514I
a = 1.031480 0.243645I
b = 0.01943 + 2.08470I
7.16558 2.61229I 10.71663 + 1.92921I
u = 0.80574 1.33514I
a = 1.031480 + 0.243645I
b = 0.01943 2.08470I
7.16558 + 2.61229I 10.71663 1.92921I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.04344 + 1.39492I
a = 1.146970 + 0.493456I
b = 0.74257 2.29110I
16.7932 13.5804I 9.69096 + 5.75208I
u = 1.04344 1.39492I
a = 1.146970 0.493456I
b = 0.74257 + 2.29110I
16.7932 + 13.5804I 9.69096 5.75208I
u = 0.155431
a = 2.24820
b = 0.397493
0.766508 12.8940
6
II. I
u
2
= h−u
4
+ u
2
+ b 1, a + u 1, u
5
u
3
u
2
+ u + 1i
(i) Arc colorings
a
7
=
0
u
a
9
=
1
0
a
5
=
u + 1
u
4
u
2
+ 1
a
10
=
1
u
2
a
11
=
2u
4
2u
3
u
2
+ 3
u
a
1
=
2u
4
2u
3
u
2
u + 3
u
a
2
=
4u
4
3u
3
3u
2
2u + 6
u
4
u
3
u + 1
a
4
=
u
4
u
3
u + 2
0
a
3
=
4u
4
+ 2u
3
+ 3u
2
+ 2u 5
u
4
+ u
3
1
a
6
=
4u
4
+ 3u
3
+ 2u
2
+ 2u 5
u
a
8
=
4u
4
+ 3u
3
+ u
2
+ 4u 5
u
4
+ u
2
+ u 2
a
8
=
4u
4
+ 3u
3
+ u
2
+ 4u 5
u
4
+ u
2
+ u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
3u
2
+ u 10
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
3u
4
+ 3u
3
3u
2
+ 2u 1
c
2
, c
10
u
5
3u
3
+ 2u 1
c
3
, c
6
u
5
2u
3
5u
2
4u 1
c
4
, c
8
u
5
3u
3
+ 2u + 1
c
5
u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ 2u + 1
c
7
u
5
+ u
4
2u
3
9u
2
17u 11
c
9
, c
11
u
5
u
3
u
2
+ u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
5
3y
4
5y
3
3y
2
2y 1
c
2
, c
4
, c
8
c
10
y
5
6y
4
+ 13y
3
12y
2
+ 4y 1
c
3
, c
6
y
5
4y
4
4y
3
9y
2
+ 6y 1
c
7
y
5
5y
4
12y
3
+ 9y
2
+ 91y 121
c
9
, c
11
y
5
2y
4
+ 3y
3
3y
2
+ 3y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.699311 + 0.811268I
a = 1.69931 0.81127I
b = 0.08973 + 1.51845I
4.27168 5.69445I 7.07561 + 6.18407I
u = 0.699311 0.811268I
a = 1.69931 + 0.81127I
b = 0.08973 1.51845I
4.27168 + 5.69445I 7.07561 6.18407I
u = 1.045750 + 0.405588I
a = 0.045747 0.405588I
b = 0.214528 + 0.727972I
1.28936 + 0.85728I 9.85891 + 1.65248I
u = 1.045750 0.405588I
a = 0.045747 + 0.405588I
b = 0.214528 0.727972I
1.28936 0.85728I 9.85891 1.65248I
u = 0.692872
a = 1.69287
b = 0.750397
13.7746 13.1310
10
III. I
u
3
= h−7.93 × 10
30
u
27
2.30 × 10
31
u
26
+ · · · + 1.78 × 10
32
b 1.02 ×
10
33
, 5.27 × 10
33
u
27
+ 4.24 × 10
33
u
26
+ · · · + 4.71 × 10
34
a 4.75 ×
10
34
, u
28
+ 2u
27
+ · · · + 16u + 53i
(i) Arc colorings
a
7
=
0
u
a
9
=
1
0
a
5
=
0.112038u
27
0.0900820u
26
+ ··· 11.0154u + 1.00852
0.0446814u
27
+ 0.129648u
26
+ ··· 2.93741u + 5.76160
a
10
=
1
u
2
a
11
=
0.0412335u
27
+ 0.151288u
26
+ ··· + 0.947304u + 6.52946
0.0570546u
27
+ 0.0640613u
26
+ ··· + 2.64220u 0.694529
a
1
=
0.0982881u
27
+ 0.215349u
26
+ ··· + 3.58950u + 5.83493
0.0570546u
27
+ 0.0640613u
26
+ ··· + 2.64220u 0.694529
a
2
=
0.139493u
27
0.00902673u
26
+ ··· 14.8255u + 7.85460
0.0820733u
27
+ 0.170760u
26
+ ··· 2.23022u + 6.62107
a
4
=
0.112897u
27
0.126972u
26
+ ··· 10.1587u 0.331526
0.0120291u
27
+ 0.0408066u
26
+ ··· 3.54568u + 3.89750
a
3
=
0.147589u
27
+ 0.261948u
26
+ ··· + 0.542279u + 10.1056
0.137753u
27
+ 0.229592u
26
+ ··· + 5.02332u + 5.68909
a
6
=
0.318579u
27
0.451498u
26
+ ··· 21.0133u 6.91766
0.0305242u
27
+ 0.0725772u
26
+ ··· 12.1016u + 8.59819
a
8
=
0.00984630u
27
0.0983526u
26
+ ··· + 6.93307u 6.10852
0.00262412u
27
0.0638304u
26
+ ··· + 3.31657u 6.12608
a
8
=
0.00984630u
27
0.0983526u
26
+ ··· + 6.93307u 6.10852
0.00262412u
27
0.0638304u
26
+ ··· + 3.31657u 6.12608
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0687616u
27
0.161087u
26
+ ··· + 10.9847u 14.9327
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
14
3u
13
+ ··· 9u + 43)
2
c
2
, c
4
, c
8
c
10
u
28
u
27
+ ··· 10u + 5
c
3
, c
6
u
28
3u
27
+ ··· + 67u + 71
c
7
(u
14
+ 4u
13
+ ··· + 10u + 25)
2
c
9
, c
11
u
28
+ 2u
27
+ ··· + 16u + 53
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
14
23y
13
+ ··· + 7573y + 1849)
2
c
2
, c
4
, c
8
c
10
y
28
23y
27
+ ··· + 790y + 25
c
3
, c
6
y
28
39y
27
+ ··· 40699y + 5041
c
7
(y
14
+ 12y
13
+ ··· 900y + 625)
2
c
9
, c
11
y
28
+ 4y
27
+ ··· + 5998y + 2809
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.584190 + 0.830454I
a = 0.230171 + 0.016365I
b = 0.120673 + 0.549343I
2.45167 0.19028I 7.59069 0.07427I
u = 0.584190 0.830454I
a = 0.230171 0.016365I
b = 0.120673 0.549343I
2.45167 + 0.19028I 7.59069 + 0.07427I
u = 0.189224 + 0.962916I
a = 1.81744 0.19971I
b = 0.015564 0.852076I
6.04992 4.80511I 11.59839 + 3.59136I
u = 0.189224 0.962916I
a = 1.81744 + 0.19971I
b = 0.015564 + 0.852076I
6.04992 + 4.80511I 11.59839 3.59136I
u = 0.579209 + 0.947954I
a = 0.979797 + 0.974887I
b = 0.149625 0.259516I
8.72421 2.38151I 11.54622 4.13808I
u = 0.579209 0.947954I
a = 0.979797 0.974887I
b = 0.149625 + 0.259516I
8.72421 + 2.38151I 11.54622 + 4.13808I
u = 0.069986 + 0.864215I
a = 1.70791 0.59133I
b = 0.019429 0.811599I
2.45167 + 0.19028I 7.59069 + 0.07427I
u = 0.069986 0.864215I
a = 1.70791 + 0.59133I
b = 0.019429 + 0.811599I
2.45167 0.19028I 7.59069 0.07427I
u = 0.998105 + 0.539137I
a = 0.556120 0.028718I
b = 0.270263 + 0.404856I
0.77359 4.74950I 0.89732 + 5.36294I
u = 0.998105 0.539137I
a = 0.556120 + 0.028718I
b = 0.270263 0.404856I
0.77359 + 4.74950I 0.89732 5.36294I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.358359 + 1.130590I
a = 0.132188 + 0.113341I
b = 0.21610 1.47756I
10.59290 5.53516I 10.41956 + 3.78484I
u = 0.358359 1.130590I
a = 0.132188 0.113341I
b = 0.21610 + 1.47756I
10.59290 + 5.53516I 10.41956 3.78484I
u = 0.412188 + 0.675927I
a = 1.94357 2.32635I
b = 0.57652 1.49217I
8.72421 + 2.38151I 11.54622 + 4.13808I
u = 0.412188 0.675927I
a = 1.94357 + 2.32635I
b = 0.57652 + 1.49217I
8.72421 2.38151I 11.54622 4.13808I
u = 0.570770 + 1.172340I
a = 1.060560 + 0.334570I
b = 0.224953 0.214426I
15.2043 + 3.9716I 10.71811 2.64104I
u = 0.570770 1.172340I
a = 1.060560 0.334570I
b = 0.224953 + 0.214426I
15.2043 3.9716I 10.71811 + 2.64104I
u = 0.905713 + 0.967441I
a = 1.44298 1.00864I
b = 0.70117 + 1.92457I
6.04992 4.80511I 11.59839 + 3.59136I
u = 0.905713 0.967441I
a = 1.44298 + 1.00864I
b = 0.70117 1.92457I
6.04992 + 4.80511I 11.59839 3.59136I
u = 0.643586 + 1.170970I
a = 1.45530 0.21856I
b = 0.55150 + 1.53777I
0.77359 + 4.74950I 0.89732 5.36294I
u = 0.643586 1.170970I
a = 1.45530 + 0.21856I
b = 0.55150 1.53777I
0.77359 4.74950I 0.89732 + 5.36294I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.412432 + 0.193729I
a = 0.741642 0.146832I
b = 0.093330 + 1.298980I
2.67330 + 1.05149I 1.77030 7.85829I
u = 0.412432 0.193729I
a = 0.741642 + 0.146832I
b = 0.093330 1.298980I
2.67330 1.05149I 1.77030 + 7.85829I
u = 1.63897 + 0.02744I
a = 0.646267 0.284696I
b = 2.54792 + 0.58842I
2.67330 + 1.05149I 1.77030 7.85829I
u = 1.63897 0.02744I
a = 0.646267 + 0.284696I
b = 2.54792 0.58842I
2.67330 1.05149I 1.77030 + 7.85829I
u = 1.63324 + 1.14769I
a = 0.616837 + 0.451371I
b = 0.72750 3.04503I
15.2043 + 3.9716I 10.71811 2.64104I
u = 1.63324 1.14769I
a = 0.616837 0.451371I
b = 0.72750 + 3.04503I
15.2043 3.9716I 10.71811 + 2.64104I
u = 1.32448 + 1.58910I
a = 0.908615 + 0.412051I
b = 0.85169 3.21610I
10.59290 + 5.53516I 10.41956 3.78484I
u = 1.32448 1.58910I
a = 0.908615 0.412051I
b = 0.85169 + 3.21610I
10.59290 5.53516I 10.41956 + 3.78484I
16
IV. I
u
4
= h−89u
13
+ 200u
12
+ · · · + 113b 381, 134u
13
503u
12
+ · · · +
113a 178, u
14
3u
13
+ · · · + 8u
2
+ 1i
(i) Arc colorings
a
7
=
0
u
a
9
=
1
0
a
5
=
1.18584u
13
+ 4.45133u
12
+ ··· 8.74336u + 1.57522
0.787611u
13
1.76991u
12
+ ··· + 2.15044u + 3.37168
a
10
=
1
u
2
a
11
=
2.44248u
13
+ 7.64602u
12
+ ··· 9.76991u 0.725664
0.840708u
13
2.32743u
12
+ ··· + 1.36283u 0.221239
a
1
=
1.60177u
13
+ 5.31858u
12
+ ··· 8.40708u 0.946903
0.840708u
13
2.32743u
12
+ ··· + 1.36283u 0.221239
a
2
=
1.02655u
13
3.77876u
12
+ ··· + 8.10619u 4.79646
1.26549u
13
+ 2.78761u
12
+ ··· 0.0619469u 1.03540
a
4
=
0.601770u
13
+ 3.31858u
12
+ ··· 5.40708u + 4.05310
0.433628u
13
1.05310u
12
+ ··· + 2.73451u + 3.99115
a
3
=
1.22124u
13
2.82301u
12
+ ··· + 0.884956u + 3.36283
1.00885u
13
3.59292u
12
+ ··· + 4.03540u 0.265487
a
6
=
4.58407u
13
+ 16.1327u
12
+ ··· 24.3363u + 3.52212
0.212389u
13
+ 1.23009u
12
+ ··· 5.84956u + 3.37168
a
8
=
1.70796u
13
+ 4.43363u
12
+ ··· + 0.168142u 3.76106
0.823009u
13
+ 2.14159u
12
+ ··· 2.29204u 2.30973
a
8
=
1.70796u
13
+ 4.43363u
12
+ ··· + 0.168142u 3.76106
0.823009u
13
+ 2.14159u
12
+ ··· 2.29204u 2.30973
(ii) Obstruction class = 1
(iii) Cusp Shapes =
42
113
u
13
102
113
u
12
84
113
u
11
+
236
113
u
10
569
113
u
9
+
340
113
u
8
+
417
113
u
7
+
22
113
u
6
+
1511
113
u
5
+
1086
113
u
4
+
350
113
u
3
+
2192
113
u
2
849
113
u
1034
113
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
7
+ 2u
6
+ u
5
+ 2u
4
+ u
3
2u
2
1)
2
c
2
, c
10
u
14
3u
12
+ ··· + 2u + 2
c
3
, c
6
u
14
+ 8u
13
+ ··· + 23u + 17
c
4
, c
8
u
14
3u
12
+ ··· 2u + 2
c
5
(u
7
2u
6
+ u
5
2u
4
+ u
3
+ 2u
2
+ 1)
2
c
7
(u
7
u
6
+ u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
2
c
9
, c
11
u
14
3u
13
+ ··· + 8u
2
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
7
2y
6
5y
5
+ 6y
4
+ 13y
3
4y 1)
2
c
2
, c
4
, c
8
c
10
y
14
6y
13
+ ··· 32y + 4
c
3
, c
6
y
14
16y
13
+ ··· 1889y + 289
c
7
(y
7
+ y
6
y
5
+ y
4
+ 16y
3
6y
2
+ 5y 1)
2
c
9
, c
11
y
14
y
13
+ ··· + 16y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.222980 + 1.103480I
a = 0.714846 1.000800I
b = 0.621624 1.229020I
5.45029 12.49575 + 0.I
u = 0.222980 1.103480I
a = 0.714846 + 1.000800I
b = 0.621624 + 1.229020I
5.45029 12.49575 + 0.I
u = 1.119060 + 0.443308I
a = 0.158358 + 0.073033I
b = 0.636639 0.251429I
1.53052 4.84436I 11.44020 + 5.79651I
u = 1.119060 0.443308I
a = 0.158358 0.073033I
b = 0.636639 + 0.251429I
1.53052 + 4.84436I 11.44020 5.79651I
u = 0.525099 + 1.185640I
a = 1.165850 + 0.707967I
b = 0.736311 0.401224I
8.72501 + 3.10373I 11.79285 6.01633I
u = 0.525099 1.185640I
a = 1.165850 0.707967I
b = 0.736311 + 0.401224I
8.72501 3.10373I 11.79285 + 6.01633I
u = 0.594473 + 1.187010I
a = 1.44607 0.16012I
b = 0.58093 + 1.29906I
1.53052 + 4.84436I 11.44020 5.79651I
u = 0.594473 1.187010I
a = 1.44607 + 0.16012I
b = 0.58093 1.29906I
1.53052 4.84436I 11.44020 + 5.79651I
u = 0.153533 + 0.473920I
a = 3.47416 2.94650I
b = 0.38762 1.68131I
8.72501 + 3.10373I 11.79285 6.01633I
u = 0.153533 0.473920I
a = 3.47416 + 2.94650I
b = 0.38762 + 1.68131I
8.72501 3.10373I 11.79285 + 6.01633I
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.082843 + 0.472693I
a = 0.662827 0.167108I
b = 0.05161 + 1.42362I
2.28861 0.77726I 13.51907 2.44765I
u = 0.082843 0.472693I
a = 0.662827 + 0.167108I
b = 0.05161 1.42362I
2.28861 + 0.77726I 13.51907 + 2.44765I
u = 1.79315 + 0.00147I
a = 0.639276 + 0.400787I
b = 3.02363 1.09128I
2.28861 0.77726I 13.51907 2.44765I
u = 1.79315 0.00147I
a = 0.639276 0.400787I
b = 3.02363 + 1.09128I
2.28861 + 0.77726I 13.51907 + 2.44765I
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
3u
4
+ 3u
3
3u
2
+ 2u 1)(u
7
+ 2u
6
+ u
5
+ 2u
4
+ u
3
2u
2
1)
2
· (u
13
+ 8u
12
+ ··· 10u + 4)(u
14
3u
13
+ ··· 9u + 43)
2
c
2
, c
10
(u
5
3u
3
+ 2u 1)(u
13
8u
11
+ ··· 2u + 2)(u
14
3u
12
+ ··· + 2u + 2)
· (u
28
u
27
+ ··· 10u + 5)
c
3
, c
6
(u
5
2u
3
5u
2
4u 1)(u
13
2u
12
+ ··· 3u + 1)
· (u
14
+ 8u
13
+ ··· + 23u + 17)(u
28
3u
27
+ ··· + 67u + 71)
c
4
, c
8
(u
5
3u
3
+ 2u + 1)(u
13
8u
11
+ ··· 2u + 2)(u
14
3u
12
+ ··· 2u + 2)
· (u
28
u
27
+ ··· 10u + 5)
c
5
(u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ 2u + 1)(u
7
2u
6
+ u
5
2u
4
+ u
3
+ 2u
2
+ 1)
2
· (u
13
+ 8u
12
+ ··· 10u + 4)(u
14
3u
13
+ ··· 9u + 43)
2
c
7
(u
5
+ u
4
2u
3
9u
2
17u 11)
· (u
7
u
6
+ u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
2
· (u
13
10u
12
+ ··· 40u + 20)(u
14
+ 4u
13
+ ··· + 10u + 25)
2
c
9
, c
11
(u
5
u
3
u
2
+ u + 1)(u
13
+ 3u
11
+ ··· + 4u + 1)
· (u
14
3u
13
+ ··· + 8u
2
+ 1)(u
28
+ 2u
27
+ ··· + 16u + 53)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
5
3y
4
5y
3
3y
2
2y 1)
· (y
7
2y
6
5y
5
+ 6y
4
+ 13y
3
4y 1)
2
· (y
13
16y
12
+ ··· + 284y 16)(y
14
23y
13
+ ··· + 7573y + 1849)
2
c
2
, c
4
, c
8
c
10
(y
5
6y
4
+ 13y
3
12y
2
+ 4y 1)(y
13
16y
12
+ ··· + 12y 4)
· (y
14
6y
13
+ ··· 32y + 4)(y
28
23y
27
+ ··· + 790y + 25)
c
3
, c
6
(y
5
4y
4
4y
3
9y
2
+ 6y 1)(y
13
24y
12
+ ··· 7y 1)
· (y
14
16y
13
+ ··· 1889y + 289)
· (y
28
39y
27
+ ··· 40699y + 5041)
c
7
(y
5
5y
4
12y
3
+ 9y
2
+ 91y 121)
· (y
7
+ y
6
y
5
+ y
4
+ 16y
3
6y
2
+ 5y 1)
2
· (y
13
2y
12
+ ··· + 4440y 400)(y
14
+ 12y
13
+ ··· 900y + 625)
2
c
9
, c
11
(y
5
2y
4
+ 3y
3
3y
2
+ 3y 1)(y
13
+ 6y
12
+ ··· + 38y 1)
· (y
14
y
13
+ ··· + 16y + 1)(y
28
+ 4y
27
+ ··· + 5998y + 2809)
23