9
43
(K9n
3
)
A knot diagram
1
Linearized knot diagam
5 9 1 7 2 8 5 3 8
Solving Sequence
3,8
9 1
2,5
7 4 6
c
8
c
9
c
2
c
7
c
4
c
6
c
1
, c
3
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
5
+ u
4
2u
3
+ u
2
+ b u + 1, u
7
2u
6
+ 5u
5
5u
4
+ 6u
3
5u
2
+ a + 3u 3,
u
8
2u
7
+ 5u
6
6u
5
+ 7u
4
7u
3
+ 4u
2
4u + 1i
I
u
2
= hb + 1, a u 1, u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 10 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
5
+ u
4
2u
3
+ u
2
+ b u + 1, u
7
2u
6
+ 5u
5
5u
4
+ 6u
3
5u
2
+ a + 3u 3, u
8
2u
7
+ · · · 4u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
2
=
u
u
3
+ u
a
5
=
u
7
+ 2u
6
5u
5
+ 5u
4
6u
3
+ 5u
2
3u + 3
u
5
u
4
+ 2u
3
u
2
+ u 1
a
7
=
u
7
+ 2u
6
4u
5
+ 5u
4
4u
3
+ 5u
2
2u + 3
u
6
+ u
5
3u
4
+ 2u
3
2u
2
+ 2u 1
a
4
=
u
5
+ 2u
3
+ u
u
5
u
3
u
a
6
=
u
7
+ u
6
3u
5
+ 2u
4
2u
3
+ 3u
2
+ 2
u
6
+ u
5
3u
4
+ 2u
3
2u
2
+ 2u 1
a
6
=
u
7
+ u
6
3u
5
+ 2u
4
2u
3
+ 3u
2
+ 2
u
6
+ u
5
3u
4
+ 2u
3
2u
2
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
+ u
6
u
5
2u
4
+ 6u
3
5u
2
+ 5u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
8
+ u
7
7u
6
4u
5
+ 16u
4
3u
3
9u
2
8u 4
c
2
, c
8
u
8
+ 2u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 7u
3
+ 4u
2
+ 4u + 1
c
3
u
8
2u
7
7u
6
+ 12u
5
+ 5u
4
+ 3u
3
2u
2
+ 2u + 1
c
4
, c
7
u
8
3u
7
2u
6
+ 9u
5
+ 5u
4
13u
3
3u
2
+ 3u 1
c
6
u
8
+ 13u
7
+ 68u
6
+ 185u
5
+ 287u
4
+ 249u
3
+ 77u
2
+ 3u + 1
c
9
u
8
+ 6u
7
+ 15u
6
+ 14u
5
9u
4
31u
3
26u
2
8u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
8
15y
7
+ 89y
6
252y
5
+ 366y
4
305y
3
95y
2
+ 8y + 16
c
2
, c
8
y
8
+ 6y
7
+ 15y
6
+ 14y
5
9y
4
31y
3
26y
2
8y + 1
c
3
y
8
18y
7
+ 107y
6
206y
5
9y
4
91y
3
+ 2y
2
8y + 1
c
4
, c
7
y
8
13y
7
+ 68y
6
185y
5
+ 287y
4
249y
3
+ 77y
2
3y + 1
c
6
y
8
33y
7
+ ··· + 145y + 1
c
9
y
8
6y
7
+ 39y
6
146y
5
+ 267y
4
239y
3
+ 162y
2
116y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.381025 + 0.877247I
a = 0.332599 + 0.127423I
b = 0.238510 0.243220I
0.36340 1.66195I 2.61632 + 3.48117I
u = 0.381025 0.877247I
a = 0.332599 0.127423I
b = 0.238510 + 0.243220I
0.36340 + 1.66195I 2.61632 3.48117I
u = 1.11498
a = 1.63389
b = 1.82176
11.0713 7.35940
u = 0.126694 + 1.193160I
a = 0.399095 1.030330I
b = 1.178780 + 0.606721I
4.43209 + 1.62541I 10.58501 1.42555I
u = 0.126694 1.193160I
a = 0.399095 + 1.030330I
b = 1.178780 0.606721I
4.43209 1.62541I 10.58501 + 1.42555I
u = 0.54402 + 1.39007I
a = 0.321827 + 1.239280I
b = 1.89776 0.22684I
15.4360 + 5.9041I 9.72541 2.82977I
u = 0.54402 1.39007I
a = 0.321827 1.239280I
b = 1.89776 + 0.22684I
15.4360 5.9041I 9.72541 + 2.82977I
u = 0.305633
a = 2.41054
b = 0.736738
1.10361 8.78710
5
II. I
u
2
= hb + 1, a u 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u + 1
a
1
=
u
u + 1
a
2
=
u
u + 1
a
5
=
u + 1
1
a
7
=
u + 2
1
a
4
=
1
0
a
6
=
u + 1
1
a
6
=
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 7
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
2
c
2
u
2
u + 1
c
3
, c
8
, c
9
u
2
+ u + 1
c
4
, c
6
(u 1)
2
c
7
(u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
2
c
2
, c
3
, c
8
c
9
y
2
+ y + 1
c
4
, c
6
, c
7
(y 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 1.00000
1.64493 2.02988I 9.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 1.00000
1.64493 + 2.02988I 9.00000 3.46410I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
2
(u
8
+ u
7
7u
6
4u
5
+ 16u
4
3u
3
9u
2
8u 4)
c
2
(u
2
u + 1)(u
8
+ 2u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 7u
3
+ 4u
2
+ 4u + 1)
c
3
(u
2
+ u + 1)(u
8
2u
7
7u
6
+ 12u
5
+ 5u
4
+ 3u
3
2u
2
+ 2u + 1)
c
4
(u 1)
2
(u
8
3u
7
2u
6
+ 9u
5
+ 5u
4
13u
3
3u
2
+ 3u 1)
c
6
((u 1)
2
)(u
8
+ 13u
7
+ ··· + 3u + 1)
c
7
(u + 1)
2
(u
8
3u
7
2u
6
+ 9u
5
+ 5u
4
13u
3
3u
2
+ 3u 1)
c
8
(u
2
+ u + 1)(u
8
+ 2u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 7u
3
+ 4u
2
+ 4u + 1)
c
9
(u
2
+ u + 1)(u
8
+ 6u
7
+ 15u
6
+ 14u
5
9u
4
31u
3
26u
2
8u + 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
2
(y
8
15y
7
+ 89y
6
252y
5
+ 366y
4
305y
3
95y
2
+ 8y + 16)
c
2
, c
8
(y
2
+ y + 1)(y
8
+ 6y
7
+ 15y
6
+ 14y
5
9y
4
31y
3
26y
2
8y + 1)
c
3
(y
2
+ y + 1)(y
8
18y
7
+ ··· 8y + 1)
c
4
, c
7
((y 1)
2
)(y
8
13y
7
+ ··· 3y + 1)
c
6
((y 1)
2
)(y
8
33y
7
+ ··· + 145y + 1)
c
9
(y
2
+ y + 1)
· (y
8
6y
7
+ 39y
6
146y
5
+ 267y
4
239y
3
+ 162y
2
116y + 1)
11