11n
174
(K11n
174
)
A knot diagram
1
Linearized knot diagam
8 5 1 10 3 11 4 3 7 5 9
Solving Sequence
5,10
11
4,7
8 6 9 1 3 2
c
10
c
4
c
7
c
6
c
9
c
11
c
3
c
2
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h4.62695 × 10
170
u
68
+ 1.38051 × 10
170
u
67
+ ··· + 1.85733 × 10
172
b 1.66494 × 10
173
,
1.82489 × 10
173
u
68
+ 1.22555 × 10
173
u
67
+ ··· + 5.55342 × 10
174
a + 8.51358 × 10
174
,
u
69
+ u
68
+ ··· + 1241u 299i
I
u
2
= h−169379u
20
231222u
19
+ ··· + 944459b + 1224184,
2844830u
20
1101150u
19
+ ··· + 2833377a + 1086592, u
21
8u
19
+ ··· 5u + 3i
* 2 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h4.63 × 10
170
u
68
+ 1.38 × 10
170
u
67
+ · · · + 1.86 × 10
172
b 1.66 ×
10
173
, 1.82 × 10
173
u
68
+ 1.23 × 10
173
u
67
+ · · · + 5.55 × 10
174
a + 8.51 ×
10
174
, u
69
+ u
68
+ · · · + 1241u 299i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
a
7
=
0.0328607u
68
0.0220684u
67
+ ··· 15.5573u 1.53303
0.0249118u
68
0.00743278u
67
+ ··· 37.1756u + 8.96412
a
8
=
0.0208503u
68
0.0263337u
67
+ ··· 21.4788u + 0.466293
0.0129014u
68
0.0116982u
67
+ ··· 43.0971u + 10.9635
a
6
=
0.0274714u
68
0.0273600u
67
+ ··· 29.5143u + 4.20418
0.00783605u
68
0.0117040u
67
+ ··· 22.3092u + 5.77052
a
9
=
0.0933496u
68
+ 0.0340529u
67
+ ··· + 276.120u 53.7846
0.0202620u
68
0.00602140u
67
+ ··· + 101.166u 24.4436
a
1
=
0.126494u
68
0.0228619u
67
+ ··· 311.080u + 71.5076
0.0303872u
68
0.00849253u
67
+ ··· 125.465u + 30.8477
a
3
=
0.0862458u
68
+ 0.0186000u
67
+ ··· + 59.5111u + 0.630964
0.176390u
68
+ 0.0257365u
67
+ ··· + 229.858u 37.9084
a
2
=
0.0862458u
68
+ 0.0186000u
67
+ ··· + 59.5111u + 0.630964
0.0922526u
68
+ 0.0308119u
67
+ ··· + 120.122u 17.6823
a
2
=
0.0862458u
68
+ 0.0186000u
67
+ ··· + 59.5111u + 0.630964
0.0922526u
68
+ 0.0308119u
67
+ ··· + 120.122u 17.6823
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.16602u
68
+ 0.125596u
67
+ ··· + 2374.59u 461.565
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
69
+ u
68
+ ··· 14400u + 2701
c
2
, c
5
u
69
+ 23u
67
+ ··· + 26u + 1
c
3
u
69
4u
68
+ ··· 2u + 1
c
4
, c
10
u
69
u
68
+ ··· + 1241u + 299
c
6
u
69
+ 5u
68
+ ··· + 41005u 959
c
7
u
69
3u
68
+ ··· 1626u 131
c
8
u
69
u
68
+ ··· + 26u 1
c
9
u
69
+ 6u
68
+ ··· 431u 77
c
11
u
69
+ 5u
68
+ ··· 144u + 13
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
69
+ y
68
+ ··· + 37585944y 7295401
c
2
, c
5
y
69
+ 46y
68
+ ··· + 142y 1
c
3
y
69
16y
68
+ ··· 92y 1
c
4
, c
10
y
69
39y
68
+ ··· + 2462795y 89401
c
6
y
69
+ 5y
68
+ ··· + 1401617939y 919681
c
7
y
69
+ 5y
68
+ ··· + 3046570y 17161
c
8
y
69
+ 7y
68
+ ··· + 6292y 1
c
9
y
69
28y
68
+ ··· + 272925y 5929
c
11
y
69
9y
68
+ ··· + 42316y 169
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.646999 + 0.771417I
a = 0.211192 0.326936I
b = 0.896559 0.908886I
0.416185 + 1.079370I 0
u = 0.646999 0.771417I
a = 0.211192 + 0.326936I
b = 0.896559 + 0.908886I
0.416185 1.079370I 0
u = 0.983915 + 0.214466I
a = 1.212160 + 0.288286I
b = 1.085450 0.882631I
4.34006 + 3.63990I 0
u = 0.983915 0.214466I
a = 1.212160 0.288286I
b = 1.085450 + 0.882631I
4.34006 3.63990I 0
u = 0.989342
a = 2.42880
b = 2.35178
7.69036 12.4710
u = 0.544955 + 0.860146I
a = 0.349532 + 0.618138I
b = 0.949040 + 0.622220I
1.48384 + 3.15855I 0
u = 0.544955 0.860146I
a = 0.349532 0.618138I
b = 0.949040 0.622220I
1.48384 3.15855I 0
u = 0.937671 + 0.242423I
a = 1.80821 + 0.79221I
b = 0.998024 0.477800I
0.065178 1.027540I 0
u = 0.937671 0.242423I
a = 1.80821 0.79221I
b = 0.998024 + 0.477800I
0.065178 + 1.027540I 0
u = 0.912710 + 0.496042I
a = 0.030686 + 0.640118I
b = 0.438358 1.147020I
3.14658 + 2.19858I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.912710 0.496042I
a = 0.030686 0.640118I
b = 0.438358 + 1.147020I
3.14658 2.19858I 0
u = 0.879619 + 0.352426I
a = 0.556829 1.277600I
b = 0.775991 + 0.537886I
4.72951 + 5.62545I 7.00000 8.05479I
u = 0.879619 0.352426I
a = 0.556829 + 1.277600I
b = 0.775991 0.537886I
4.72951 5.62545I 7.00000 + 8.05479I
u = 0.992117 + 0.371780I
a = 0.398508 0.958996I
b = 0.832640 + 0.218514I
5.20276 2.53834I 0
u = 0.992117 0.371780I
a = 0.398508 + 0.958996I
b = 0.832640 0.218514I
5.20276 + 2.53834I 0
u = 0.551335 + 0.759408I
a = 1.45706 0.66527I
b = 0.848128 + 0.357950I
4.60897 + 1.94484I 7.00000 4.19773I
u = 0.551335 0.759408I
a = 1.45706 + 0.66527I
b = 0.848128 0.357950I
4.60897 1.94484I 7.00000 + 4.19773I
u = 0.781416 + 0.747040I
a = 0.845155 + 0.035539I
b = 0.117045 0.392685I
3.15602 + 2.89631I 0
u = 0.781416 0.747040I
a = 0.845155 0.035539I
b = 0.117045 + 0.392685I
3.15602 2.89631I 0
u = 0.836552 + 0.355471I
a = 3.41431 + 0.11009I
b = 0.502414 + 0.462655I
3.55336 5.75372I 7.00000 + 11.54806I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.836552 0.355471I
a = 3.41431 0.11009I
b = 0.502414 0.462655I
3.55336 + 5.75372I 7.00000 11.54806I
u = 0.843450 + 0.242120I
a = 1.26133 + 1.68155I
b = 1.057060 + 0.267031I
3.83982 1.81111I 13.9331 + 2.5659I
u = 0.843450 0.242120I
a = 1.26133 1.68155I
b = 1.057060 0.267031I
3.83982 + 1.81111I 13.9331 2.5659I
u = 0.944665 + 0.609755I
a = 0.642781 0.314129I
b = 0.493148 0.791344I
3.48160 + 3.20310I 0
u = 0.944665 0.609755I
a = 0.642781 + 0.314129I
b = 0.493148 + 0.791344I
3.48160 3.20310I 0
u = 0.812640
a = 3.87743
b = 2.19181
6.98195 37.6100
u = 1.083740 + 0.490953I
a = 0.337664 0.729476I
b = 0.69070 1.52502I
2.99415 + 8.36107I 0
u = 1.083740 0.490953I
a = 0.337664 + 0.729476I
b = 0.69070 + 1.52502I
2.99415 8.36107I 0
u = 1.003500 + 0.664719I
a = 1.64373 0.77917I
b = 1.29183 + 0.97984I
0.66031 6.51484I 0
u = 1.003500 0.664719I
a = 1.64373 + 0.77917I
b = 1.29183 0.97984I
0.66031 + 6.51484I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.138230 + 0.429957I
a = 1.47102 + 0.04439I
b = 0.783779 0.565791I
0.86519 1.56917I 0
u = 1.138230 0.429957I
a = 1.47102 0.04439I
b = 0.783779 + 0.565791I
0.86519 + 1.56917I 0
u = 1.073130 + 0.613211I
a = 1.71878 + 0.44891I
b = 1.43565 0.67603I
3.14777 8.57745I 0
u = 1.073130 0.613211I
a = 1.71878 0.44891I
b = 1.43565 + 0.67603I
3.14777 + 8.57745I 0
u = 1.181450 + 0.456884I
a = 1.69529 + 0.24281I
b = 1.38781 + 0.83986I
1.06984 5.59848I 0
u = 1.181450 0.456884I
a = 1.69529 0.24281I
b = 1.38781 0.83986I
1.06984 + 5.59848I 0
u = 0.461685 + 0.555961I
a = 2.67569 0.54050I
b = 0.783354 + 0.742055I
4.89807 4.12724I 4.69782 + 0.44028I
u = 0.461685 0.555961I
a = 2.67569 + 0.54050I
b = 0.783354 0.742055I
4.89807 + 4.12724I 4.69782 0.44028I
u = 0.345763 + 0.592216I
a = 0.397171 0.641878I
b = 0.759436 + 0.517199I
0.99239 1.75950I 5.61831 + 3.16702I
u = 0.345763 0.592216I
a = 0.397171 + 0.641878I
b = 0.759436 0.517199I
0.99239 + 1.75950I 5.61831 3.16702I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.303150 + 0.255913I
a = 1.199260 0.077483I
b = 0.695903 0.824477I
3.03191 + 4.92813I 0
u = 1.303150 0.255913I
a = 1.199260 + 0.077483I
b = 0.695903 + 0.824477I
3.03191 4.92813I 0
u = 0.264694 + 1.302280I
a = 0.276135 0.075262I
b = 0.628096 0.543055I
5.46533 1.95793I 0
u = 0.264694 1.302280I
a = 0.276135 + 0.075262I
b = 0.628096 + 0.543055I
5.46533 + 1.95793I 0
u = 1.34209
a = 1.52954
b = 1.24410
6.44945 0
u = 0.284379 + 1.314310I
a = 0.186188 0.177334I
b = 0.982920 0.710312I
4.22642 9.68925I 0
u = 0.284379 1.314310I
a = 0.186188 + 0.177334I
b = 0.982920 + 0.710312I
4.22642 + 9.68925I 0
u = 1.009230 + 0.891812I
a = 0.469205 0.687863I
b = 1.228300 + 0.212557I
0.78649 3.40776I 0
u = 1.009230 0.891812I
a = 0.469205 + 0.687863I
b = 1.228300 0.212557I
0.78649 + 3.40776I 0
u = 1.386720 + 0.203029I
a = 1.67954 + 0.82158I
b = 0.652595 0.295438I
1.67434 4.68821I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.386720 0.203029I
a = 1.67954 0.82158I
b = 0.652595 + 0.295438I
1.67434 + 4.68821I 0
u = 0.263199 + 0.512655I
a = 0.314251 0.278779I
b = 0.068496 + 0.982153I
1.46946 2.23986I 4.09553 + 5.07809I
u = 0.263199 0.512655I
a = 0.314251 + 0.278779I
b = 0.068496 0.982153I
1.46946 + 2.23986I 4.09553 5.07809I
u = 1.44216 + 0.21699I
a = 1.45596 0.24216I
b = 1.35370 1.16416I
6.77713 + 4.78765I 0
u = 1.44216 0.21699I
a = 1.45596 + 0.24216I
b = 1.35370 + 1.16416I
6.77713 4.78765I 0
u = 1.34664 + 0.66399I
a = 1.40126 0.24609I
b = 1.056310 + 0.681780I
1.92930 + 8.74493I 0
u = 1.34664 0.66399I
a = 1.40126 + 0.24609I
b = 1.056310 0.681780I
1.92930 8.74493I 0
u = 1.34848 + 0.70986I
a = 1.49515 0.27888I
b = 1.30284 + 0.92320I
0.8188 + 16.7284I 0
u = 1.34848 0.70986I
a = 1.49515 + 0.27888I
b = 1.30284 0.92320I
0.8188 16.7284I 0
u = 0.48219 + 1.46172I
a = 0.058144 0.214259I
b = 0.383661 0.274092I
4.45642 1.12527I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.48219 1.46172I
a = 0.058144 + 0.214259I
b = 0.383661 + 0.274092I
4.45642 + 1.12527I 0
u = 1.35260 + 0.78453I
a = 0.783396 + 0.049976I
b = 0.837091 + 0.848083I
1.30082 6.59534I 0
u = 1.35260 0.78453I
a = 0.783396 0.049976I
b = 0.837091 0.848083I
1.30082 + 6.59534I 0
u = 0.407799 + 0.154731I
a = 1.14417 1.09443I
b = 0.473737 1.265520I
1.79868 + 2.32213I 6.69752 8.58341I
u = 0.407799 0.154731I
a = 1.14417 + 1.09443I
b = 0.473737 + 1.265520I
1.79868 2.32213I 6.69752 + 8.58341I
u = 0.419858
a = 0.693573
b = 0.163880
0.763533 13.2570
u = 1.68905
a = 1.34682
b = 0.835443
10.1736 0
u = 1.69539 + 0.17399I
a = 0.834045 + 0.259613I
b = 0.917744 + 0.009907I
3.02414 + 3.47680I 0
u = 1.69539 0.17399I
a = 0.834045 0.259613I
b = 0.917744 0.009907I
3.02414 3.47680I 0
11
II.
I
u
2
= h−1.69 × 10
5
u
20
2.31 × 10
5
u
19
+ · · · + 9.44 × 10
5
b + 1.22 × 10
6
, 2.84 ×
10
6
u
20
1.10×10
6
u
19
+· · · +2.83×10
6
a+1.09×10
6
, u
21
8u
19
+· · · 5u +3i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
a
7
=
1.00404u
20
+ 0.388635u
19
+ ··· + 1.07419u 0.383497
0.179340u
20
+ 0.244820u
19
+ ··· + 0.837749u 1.29617
a
8
=
0.278065u
20
+ 0.424159u
19
+ ··· + 2.82922u + 0.0479498
0.546638u
20
+ 0.280344u
19
+ ··· + 2.59278u 0.864728
a
6
=
0.393839u
20
+ 0.436626u
19
+ ··· + 2.98089u 0.513766
0.0848994u
20
+ 0.462763u
19
+ ··· + 2.90831u 1.44015
a
9
=
1.76207u
20
+ 1.35703u
19
+ ··· + 5.66155u 7.63449
0.844115u
20
+ 0.284923u
19
+ ··· + 1.65062u 3.63281
a
1
=
1.02305u
20
+ 0.397755u
19
+ ··· 3.35591u 0.933981
1.06778u
20
+ 0.930275u
19
+ ··· 1.21589u 1.92881
a
3
=
0.111242u
20
0.225450u
19
+ ··· 1.70101u + 1.47329
0.986755u
20
+ 0.623445u
19
+ ··· + 3.11692u + 0.482363
a
2
=
0.111242u
20
0.225450u
19
+ ··· 1.70101u + 1.47329
0.821127u
20
+ 0.800904u
19
+ ··· + 4.57789u 0.193986
a
2
=
0.111242u
20
0.225450u
19
+ ··· 1.70101u + 1.47329
0.821127u
20
+ 0.800904u
19
+ ··· + 4.57789u 0.193986
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6854663
944459
u
20
94727
944459
u
19
+ ··· +
15667372
944459
u
1422408
944459
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
21
6u
19
+ ··· + 2u + 3
c
2
u
21
u
20
+ ··· 2u 1
c
3
u
21
+ 7u
20
+ ··· + 6u + 1
c
4
u
21
8u
19
+ ··· 5u 3
c
5
u
21
+ u
20
+ ··· 2u + 1
c
6
u
21
+ 4u
20
+ ··· + 97u + 7
c
7
u
21
8u
18
+ ··· 26u 1
c
8
u
21
5u
19
+ ··· 4u 1
c
9
u
21
+ 11u
20
+ ··· + 9u + 1
c
10
u
21
8u
19
+ ··· 5u + 3
c
11
u
21
2u
20
+ ··· 4u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
12y
20
+ ··· + 64y 9
c
2
, c
5
y
21
+ 5y
20
+ ··· + 14y 1
c
3
y
21
9y
20
+ ··· 16y
2
1
c
4
, c
10
y
21
16y
20
+ ··· + 55y 9
c
6
y
21
16y
20
+ ··· + 11327y 49
c
7
y
21
6y
19
+ ··· + 666y 1
c
8
y
21
10y
20
+ ··· + 12y 1
c
9
y
21
13y
20
+ ··· + 9y 1
c
11
y
21
2y
20
+ ··· + 24y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.047640 + 0.248949I
a = 1.11386 + 1.03676I
b = 0.889867 0.517208I
5.46548 + 5.39204I 17.4584 5.1370I
u = 1.047640 0.248949I
a = 1.11386 1.03676I
b = 0.889867 + 0.517208I
5.46548 5.39204I 17.4584 + 5.1370I
u = 1.16767
a = 2.18668
b = 2.15365
8.35390 22.8760
u = 0.679857 + 0.446838I
a = 0.127896 0.264606I
b = 0.613519 1.245460I
1.77824 1.61097I 7.53353 1.62371I
u = 0.679857 0.446838I
a = 0.127896 + 0.264606I
b = 0.613519 + 1.245460I
1.77824 + 1.61097I 7.53353 + 1.62371I
u = 1.173280 + 0.260964I
a = 0.881494 + 0.887530I
b = 0.913294 0.046728I
5.83828 3.07420I 16.8807 + 4.9165I
u = 1.173280 0.260964I
a = 0.881494 0.887530I
b = 0.913294 + 0.046728I
5.83828 + 3.07420I 16.8807 4.9165I
u = 0.785925
a = 3.72133
b = 2.23310
6.81637 11.9480
u = 1.120180 + 0.600951I
a = 1.47135 0.18734I
b = 1.13102 + 0.89771I
0.00904 + 5.86285I 6.73177 5.24479I
u = 1.120180 0.600951I
a = 1.47135 + 0.18734I
b = 1.13102 0.89771I
0.00904 5.86285I 6.73177 + 5.24479I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.560710 + 0.288461I
a = 3.24760 1.40038I
b = 0.114885 0.587959I
3.70067 5.02391I 6.64273 + 2.70695I
u = 0.560710 0.288461I
a = 3.24760 + 1.40038I
b = 0.114885 + 0.587959I
3.70067 + 5.02391I 6.64273 2.70695I
u = 1.40713 + 0.19832I
a = 1.50239 0.29253I
b = 1.40025 1.20102I
6.98589 4.93986I 24.1840 + 13.1442I
u = 1.40713 0.19832I
a = 1.50239 + 0.29253I
b = 1.40025 + 1.20102I
6.98589 + 4.93986I 24.1840 13.1442I
u = 0.27754 + 1.39957I
a = 0.064235 0.253321I
b = 0.295868 0.174182I
4.41960 1.49996I 7.35710 + 9.23152I
u = 0.27754 1.39957I
a = 0.064235 + 0.253321I
b = 0.295868 + 0.174182I
4.41960 + 1.49996I 7.35710 9.23152I
u = 0.181335 + 0.523673I
a = 0.794687 + 1.024240I
b = 0.878799 + 0.633409I
2.44382 + 2.36069I 11.11778 3.12439I
u = 0.181335 0.523673I
a = 0.794687 1.024240I
b = 0.878799 0.633409I
2.44382 2.36069I 11.11778 + 3.12439I
u = 1.45442 + 0.23658I
a = 1.196910 + 0.367608I
b = 0.476403 0.419593I
1.14902 4.42293I 3.30825 + 2.88214I
u = 1.45442 0.23658I
a = 1.196910 0.367608I
b = 0.476403 + 0.419593I
1.14902 + 4.42293I 3.30825 2.88214I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.67395
a = 1.36531
b = 0.857609
10.2279 83.6430
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
21
6u
19
+ ··· + 2u + 3)(u
69
+ u
68
+ ··· 14400u + 2701)
c
2
(u
21
u
20
+ ··· 2u 1)(u
69
+ 23u
67
+ ··· + 26u + 1)
c
3
(u
21
+ 7u
20
+ ··· + 6u + 1)(u
69
4u
68
+ ··· 2u + 1)
c
4
(u
21
8u
19
+ ··· 5u 3)(u
69
u
68
+ ··· + 1241u + 299)
c
5
(u
21
+ u
20
+ ··· 2u + 1)(u
69
+ 23u
67
+ ··· + 26u + 1)
c
6
(u
21
+ 4u
20
+ ··· + 97u + 7)(u
69
+ 5u
68
+ ··· + 41005u 959)
c
7
(u
21
8u
18
+ ··· 26u 1)(u
69
3u
68
+ ··· 1626u 131)
c
8
(u
21
5u
19
+ ··· 4u 1)(u
69
u
68
+ ··· + 26u 1)
c
9
(u
21
+ 11u
20
+ ··· + 9u + 1)(u
69
+ 6u
68
+ ··· 431u 77)
c
10
(u
21
8u
19
+ ··· 5u + 3)(u
69
u
68
+ ··· + 1241u + 299)
c
11
(u
21
2u
20
+ ··· 4u 1)(u
69
+ 5u
68
+ ··· 144u + 13)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
21
12y
20
+ ··· + 64y 9)
· (y
69
+ y
68
+ ··· + 37585944y 7295401)
c
2
, c
5
(y
21
+ 5y
20
+ ··· + 14y 1)(y
69
+ 46y
68
+ ··· + 142y 1)
c
3
(y
21
9y
20
+ ··· 16y
2
1)(y
69
16y
68
+ ··· 92y 1)
c
4
, c
10
(y
21
16y
20
+ ··· + 55y 9)(y
69
39y
68
+ ··· + 2462795y 89401)
c
6
(y
21
16y
20
+ ··· + 11327y 49)
· (y
69
+ 5y
68
+ ··· + 1401617939y 919681)
c
7
(y
21
6y
19
+ ··· + 666y 1)(y
69
+ 5y
68
+ ··· + 3046570y 17161)
c
8
(y
21
10y
20
+ ··· + 12y 1)(y
69
+ 7y
68
+ ··· + 6292y 1)
c
9
(y
21
13y
20
+ ··· + 9y 1)(y
69
28y
68
+ ··· + 272925y 5929)
c
11
(y
21
2y
20
+ ··· + 24y 1)(y
69
9y
68
+ ··· + 42316y 169)
19