11n
175
(K11n
175
)
A knot diagram
1
Linearized knot diagam
5 8 1 10 9 1 4 6 2 4 8
Solving Sequence
5,9 2,6
10 1 4 3 8 7 11
c
5
c
9
c
1
c
4
c
3
c
8
c
7
c
11
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
17
27u
16
+ ··· + 2b 4, u
17
+ 6u
16
+ ··· + 2a 35, u
18
9u
17
+ ··· 50u + 4i
I
u
2
= h−43u
5
a
3
+ 57u
5
a
2
+ ··· + 93a + 11, u
5
a
3
3u
5
a + ··· 8a + 28, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
I
u
3
= h−u
8
u
7
3u
6
2u
5
4u
4
3u
3
3u
2
+ b 2u 1,
u
9
+ 2u
8
+ 3u
7
+ 5u
6
+ 4u
5
+ 8u
4
+ 3u
3
+ 5u
2
+ 3a + u + 1,
u
10
+ 2u
9
+ 6u
8
+ 8u
7
+ 13u
6
+ 14u
5
+ 15u
4
+ 14u
3
+ 10u
2
+ 7u + 3i
* 3 irreducible components of dim
C
= 0, with total 52 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3u
17
27u
16
+· · ·+2b4, u
17
+6u
16
+· · ·+2a35, u
18
9u
17
+· · ·50u+4i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
2
=
1
2
u
17
3u
16
+ ···
273
2
u +
35
2
3
2
u
17
+
27
2
u
16
+ ···
85
2
u + 2
a
6
=
1
u
2
a
10
=
9
4
u
17
75
4
u
16
+ ··· +
731
4
u 18
3
2
u
17
+
25
2
u
16
+ ···
187
2
u + 9
a
1
=
u
17
+
21
2
u
16
+ ··· 179u +
39
2
3
2
u
17
+
27
2
u
16
+ ···
85
2
u + 2
a
4
=
u
17
+
19
2
u
16
+ ··· 261u +
55
2
1
2
u
17
7
2
u
16
+ ··· +
179
2
u 10
a
3
=
3
2
u
17
+ 14u
16
+ ···
331
2
u +
39
2
3
2
u
17
+
25
2
u
16
+ ··· +
57
2
u 4
a
8
=
u
u
3
+ u
a
7
=
5
4
u
17
43
4
u
16
+ ··· +
327
4
u 7
1
2
u
17
+
9
2
u
16
+ ···
145
2
u + 7
a
11
=
u
17
+
21
2
u
16
+ ··· 198u +
43
2
3
2
u
17
+
27
2
u
16
+ ··· + 194u
2
47
2
u
a
11
=
u
17
+
21
2
u
16
+ ··· 198u +
43
2
3
2
u
17
+
27
2
u
16
+ ··· + 194u
2
47
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
17
+ 27u
16
140u
15
+ 513u
14
1455u
13
+ 3348u
12
6412u
11
+ 10399u
10
14401u
9
+ 17095u
8
17369u
7
+ 14980u
6
10819u
5
+ 6362u
4
2908u
3
+ 949u
2
170u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
18
2u
16
+ ··· + 7u
2
1
c
2
, c
6
u
18
7u
16
+ ··· 2u 13
c
3
u
18
13u
17
+ ··· 62u 52
c
4
, c
10
u
18
+ 13u
17
+ ··· + 608u + 64
c
5
, c
8
u
18
+ 9u
17
+ ··· + 50u + 4
c
7
, c
11
u
18
+ 2u
17
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
18
4y
17
+ ··· 14y + 1
c
2
, c
6
y
18
14y
17
+ ··· 1564y + 169
c
3
y
18
19y
17
+ ··· + 6660y + 2704
c
4
, c
10
y
18
+ 9y
17
+ ··· 17408y + 4096
c
5
, c
8
y
18
+ 13y
17
+ ··· 364y + 16
c
7
, c
11
y
18
26y
17
+ ··· 21y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.082250 + 0.227691I
a = 0.552560 1.011470I
b = 0.828307 + 0.968844I
2.96562 + 8.53890I 6.56006 6.26417I
u = 1.082250 0.227691I
a = 0.552560 + 1.011470I
b = 0.828307 0.968844I
2.96562 8.53890I 6.56006 + 6.26417I
u = 0.118459 + 1.148360I
a = 0.235904 + 0.462260I
b = 0.558784 0.216142I
1.23970 1.97493I 7.15329 + 4.18348I
u = 0.118459 1.148360I
a = 0.235904 0.462260I
b = 0.558784 + 0.216142I
1.23970 + 1.97493I 7.15329 4.18348I
u = 0.119333 + 1.157960I
a = 0.466244 0.909025I
b = 0.996978 + 0.648369I
3.72560 + 1.35027I 12.38494 1.13112I
u = 0.119333 1.157960I
a = 0.466244 + 0.909025I
b = 0.996978 0.648369I
3.72560 1.35027I 12.38494 + 1.13112I
u = 0.200699 + 1.177200I
a = 0.746983 + 1.092830I
b = 1.13656 1.09868I
0.82240 + 4.90619I 8.42983 0.71625I
u = 0.200699 1.177200I
a = 0.746983 1.092830I
b = 1.13656 + 1.09868I
0.82240 4.90619I 8.42983 + 0.71625I
u = 1.48738
a = 0.407205
b = 0.605669
6.56717 21.0980
u = 0.46203 + 1.43201I
a = 0.460365 1.018170I
b = 1.24533 + 1.12967I
8.1698 + 13.9821I 9.44231 6.99967I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.46203 1.43201I
a = 0.460365 + 1.018170I
b = 1.24533 1.12967I
8.1698 13.9821I 9.44231 + 6.99967I
u = 0.446331 + 0.206443I
a = 1.97819 0.97124I
b = 0.682422 + 0.841875I
3.74044 2.38337I 9.76739 + 4.47048I
u = 0.446331 0.206443I
a = 1.97819 + 0.97124I
b = 0.682422 0.841875I
3.74044 + 2.38337I 9.76739 4.47048I
u = 0.51935 + 1.48126I
a = 0.115710 + 0.783531I
b = 1.100520 0.578325I
11.82300 + 6.66028I 12.41949 4.41908I
u = 0.51935 1.48126I
a = 0.115710 0.783531I
b = 1.100520 + 0.578325I
11.82300 6.66028I 12.41949 + 4.41908I
u = 0.93646 + 1.42974I
a = 0.302389 0.123907I
b = 0.460331 0.316302I
5.89009 1.65718I 15.9057 + 11.0160I
u = 0.93646 1.42974I
a = 0.302389 + 0.123907I
b = 0.460331 + 0.316302I
5.89009 + 1.65718I 15.9057 11.0160I
u = 0.216637
a = 2.30970
b = 0.500367
0.728249 13.7760
6
II. I
u
2
= h−43u
5
a
3
+ 57u
5
a
2
+ · · · + 93a + 11, u
5
a
3
3u
5
a + · · · 8a +
28, u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
2
=
a
0.394495a
3
u
5
0.522936a
2
u
5
+ ··· 0.853211a 0.100917
a
6
=
1
u
2
a
10
=
a
2
u
0.385321a
3
u
5
0.394495a
2
u
5
+ ··· + 0.724771a 0.935780
a
1
=
0.394495a
3
u
5
0.522936a
2
u
5
+ ··· + 0.146789a 0.100917
0.394495a
3
u
5
0.522936a
2
u
5
+ ··· 0.853211a 0.100917
a
4
=
0.321101a
3
u
5
0.495413a
2
u
5
+ ··· 0.229358a + 0.220183
0.385321a
3
u
5
0.394495a
2
u
5
+ ··· + 0.724771a + 0.0642202
a
3
=
0.798165a
3
u
5
1.17431a
2
u
5
+ ··· + 0.715596a 0.366972
0.862385a
3
u
5
1.07339a
2
u
5
+ ··· + 0.669725a 0.522936
a
8
=
u
u
3
+ u
a
7
=
0.522936a
3
u
5
1.32110a
2
u
5
+ ··· + 0.0550459a + 2.58716
0.146789a
3
u
5
1.05505a
2
u
5
+ ··· + 0.752294a 0.642202
a
11
=
0.0642202a
3
u
5
+ 0.100917a
2
u
5
+ ··· + 0.954128a 0.155963
0.385321a
3
u
5
+ 0.394495a
2
u
5
+ ··· 0.724771a 0.0642202
a
11
=
0.0642202a
3
u
5
+ 0.100917a
2
u
5
+ ··· + 0.954128a 0.155963
0.385321a
3
u
5
+ 0.394495a
2
u
5
+ ··· 0.724771a 0.0642202
(ii) Obstruction class = 1
(iii) Cusp Shapes =
168
109
u
5
a
3
+
172
109
u
5
a
2
+ ···
316
109
a
682
109
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
24
+ 5u
23
+ ··· 12u + 3
c
2
, c
6
u
24
u
23
+ ··· 1976u + 793
c
3
(u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
4
c
4
, c
10
(u
2
u + 1)
12
c
5
, c
8
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
4
c
7
, c
11
u
24
+ u
23
+ ··· + 198u + 93
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
24
+ 3y
23
+ ··· 156y + 9
c
2
, c
6
y
24
17y
23
+ ··· 2553304y + 628849
c
3
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
4
c
4
, c
10
(y
2
+ y + 1)
12
c
5
, c
8
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
4
c
7
, c
11
y
24
25y
23
+ ··· + 40776y + 8649
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0.696693 + 0.745196I
b = 0.424035 0.969980I
2.72528 2.02988I 5.73050 + 3.46410I
u = 0.873214
a = 0.696693 0.745196I
b = 0.424035 + 0.969980I
2.72528 + 2.02988I 5.73050 3.46410I
u = 0.873214
a = 0.485602 + 1.110820I
b = 0.608362 0.650716I
2.72528 + 2.02988I 5.73050 3.46410I
u = 0.873214
a = 0.485602 1.110820I
b = 0.608362 + 0.650716I
2.72528 2.02988I 5.73050 + 3.46410I
u = 0.138835 + 1.234450I
a = 0.047053 0.843430I
b = 0.49525 + 2.03273I
7.89505 0.05747I 13.42428 0.22068I
u = 0.138835 + 1.234450I
a = 1.67067 + 0.21330I
b = 1.047700 + 0.059012I
7.89505 0.05747I 13.42428 0.22068I
u = 0.138835 + 1.234450I
a = 0.010113 + 0.251086I
b = 1.84383 1.47696I
7.89505 + 4.00229I 13.4243 7.1489I
u = 0.138835 + 1.234450I
a = 1.34740 1.34211I
b = 0.308548 0.047344I
7.89505 + 4.00229I 13.4243 7.1489I
u = 0.138835 1.234450I
a = 0.047053 + 0.843430I
b = 0.49525 2.03273I
7.89505 + 0.05747I 13.42428 + 0.22068I
u = 0.138835 1.234450I
a = 1.67067 0.21330I
b = 1.047700 0.059012I
7.89505 + 0.05747I 13.42428 + 0.22068I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.138835 1.234450I
a = 0.010113 0.251086I
b = 1.84383 + 1.47696I
7.89505 4.00229I 13.4243 + 7.1489I
u = 0.138835 1.234450I
a = 1.34740 + 1.34211I
b = 0.308548 + 0.047344I
7.89505 4.00229I 13.4243 + 7.1489I
u = 0.408802 + 1.276380I
a = 0.353289 + 0.834565I
b = 1.20721 1.28821I
1.23922 6.62201I 9.41886 + 6.66892I
u = 0.408802 + 1.276380I
a = 0.070379 + 0.682688I
b = 0.269751 0.368903I
1.23922 2.56224I 9.41886 0.25928I
u = 0.408802 + 1.276380I
a = 0.640625 1.150990I
b = 0.920794 + 0.792102I
1.23922 6.62201I 9.41886 + 6.66892I
u = 0.408802 + 1.276380I
a = 0.200742 0.275636I
b = 0.842596 + 0.368915I
1.23922 2.56224I 9.41886 0.25928I
u = 0.408802 1.276380I
a = 0.353289 0.834565I
b = 1.20721 + 1.28821I
1.23922 + 6.62201I 9.41886 6.66892I
u = 0.408802 1.276380I
a = 0.070379 0.682688I
b = 0.269751 + 0.368903I
1.23922 + 2.56224I 9.41886 + 0.25928I
u = 0.408802 1.276380I
a = 0.640625 + 1.150990I
b = 0.920794 0.792102I
1.23922 + 6.62201I 9.41886 6.66892I
u = 0.408802 1.276380I
a = 0.200742 + 0.275636I
b = 0.842596 0.368915I
1.23922 + 2.56224I 9.41886 + 0.25928I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.413150
a = 0.71019 + 2.16507I
b = 1.176440 0.634954I
4.19595 + 2.02988I 4.58322 3.46410I
u = 0.413150
a = 0.71019 2.16507I
b = 1.176440 + 0.634954I
4.19595 2.02988I 4.58322 + 3.46410I
u = 0.413150
a = 2.84750 + 1.53686I
b = 0.293413 0.894500I
4.19595 + 2.02988I 4.58322 3.46410I
u = 0.413150
a = 2.84750 1.53686I
b = 0.293413 + 0.894500I
4.19595 2.02988I 4.58322 + 3.46410I
12
III.
I
u
3
= h−u
8
u
7
+ · · · + b 1, u
9
+ 2u
8
+ · · · + 3a + 1, u
10
+ 2u
9
+ · · · + 7u + 3i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
2
=
1
3
u
9
2
3
u
8
+ ···
1
3
u
1
3
u
8
+ u
7
+ 3u
6
+ 2u
5
+ 4u
4
+ 3u
3
+ 3u
2
+ 2u + 1
a
6
=
1
u
2
a
10
=
1
3
u
9
+
2
3
u
8
+ ···
2
3
u
5
3
u
8
u
7
4u
6
3u
5
6u
4
4u
3
4u
2
3u 1
a
1
=
1
3
u
9
+
1
3
u
8
+ ··· +
5
3
u +
2
3
u
8
+ u
7
+ 3u
6
+ 2u
5
+ 4u
4
+ 3u
3
+ 3u
2
+ 2u + 1
a
4
=
2
3
u
9
7
3
u
8
+ ···
23
3
u
11
3
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 3u
3
+ 2u
2
+ u + 2
a
3
=
2
3
u
9
+
4
3
u
8
+ ··· +
5
3
u
1
3
u
9
+ 2u
8
+ 5u
7
+ 6u
6
+ 8u
5
+ 8u
4
+ 7u
3
+ 6u
2
+ 3u + 1
a
8
=
u
u
3
+ u
a
7
=
2
3
u
9
+
4
3
u
8
+ ··· +
11
3
u +
5
3
u
5
u
4
2u
3
2u
2
2u 2
a
11
=
1
3
u
9
+
1
3
u
8
+ ··· +
8
3
u +
2
3
u
4
+ u
3
+ 2u
2
+ u + 1
a
11
=
1
3
u
9
+
1
3
u
8
+ ··· +
8
3
u +
2
3
u
4
+ u
3
+ 2u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
9
+ 6u
8
+ 16u
7
+ 21u
6
+ 29u
5
+ 34u
4
+ 29u
3
+ 29u
2
+ 16u + 3
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u
10
+ u
8
u
7
+ 6u
6
2u
5
+ 4u
4
4u
3
+ 5u
2
2u + 1
c
2
, c
6
u
10
4u
8
+ 3u
7
+ 12u
6
+ u
5
+ 11u
3
+ 2u
2
2u + 3
c
3
u
10
+ 8u
9
+ ··· + 26u + 3
c
4
u
10
+ 4u
8
+ 8u
6
+ 2u
5
+ 10u
4
+ 3u
3
+ 7u
2
+ u + 3
c
5
u
10
+ 2u
9
+ 6u
8
+ 8u
7
+ 13u
6
+ 14u
5
+ 15u
4
+ 14u
3
+ 10u
2
+ 7u + 3
c
7
, c
11
u
10
4u
8
+ 3u
6
+ u
5
+ 4u
4
+ 4u
2
u + 1
c
8
u
10
2u
9
+ 6u
8
8u
7
+ 13u
6
14u
5
+ 15u
4
14u
3
+ 10u
2
7u + 3
c
10
u
10
+ 4u
8
+ 8u
6
2u
5
+ 10u
4
3u
3
+ 7u
2
u + 3
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
9
y
10
+ 2y
9
+ ··· + 6y + 1
c
2
, c
6
y
10
8y
9
+ ··· + 8y + 9
c
3
y
10
8y
9
+ ··· 178y + 9
c
4
, c
10
y
10
+ 8y
9
+ ··· + 41y + 9
c
5
, c
8
y
10
+ 8y
9
+ ··· + 11y + 9
c
7
, c
11
y
10
8y
9
+ 22y
8
16y
7
15y
6
7y
5
+ 32y
4
+ 40y
3
+ 24y
2
+ 7y + 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.555224 + 0.913312I
a = 0.348707 + 0.379158I
b = 0.152679 + 0.528996I
5.66496 0.94946I 9.80995 0.64578I
u = 0.555224 0.913312I
a = 0.348707 0.379158I
b = 0.152679 0.528996I
5.66496 + 0.94946I 9.80995 + 0.64578I
u = 0.106413 + 1.166400I
a = 0.965103 + 0.714296I
b = 0.935856 1.049690I
7.32588 + 2.86616I 9.25686 0.74854I
u = 0.106413 1.166400I
a = 0.965103 0.714296I
b = 0.935856 + 1.049690I
7.32588 2.86616I 9.25686 + 0.74854I
u = 0.757440 + 0.211348I
a = 1.029450 + 0.893435I
b = 0.590918 0.894294I
4.48505 + 2.09086I 1.20974 1.26388I
u = 0.757440 0.211348I
a = 1.029450 0.893435I
b = 0.590918 + 0.894294I
4.48505 2.09086I 1.20974 + 1.26388I
u = 0.333031 + 1.234640I
a = 0.641089 1.043630I
b = 1.07501 + 1.13908I
1.20593 5.98785I 5.27541 + 6.66552I
u = 0.333031 1.234640I
a = 0.641089 + 1.043630I
b = 1.07501 1.13908I
1.20593 + 5.98785I 5.27541 6.66552I
u = 0.571165 + 1.251720I
a = 0.161914 + 0.535162I
b = 0.577394 0.508337I
0.92481 3.39622I 5.36753 + 9.56684I
u = 0.571165 1.251720I
a = 0.161914 0.535162I
b = 0.577394 + 0.508337I
0.92481 + 3.39622I 5.36753 9.56684I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
9
(u
10
+ u
8
u
7
+ 6u
6
2u
5
+ 4u
4
4u
3
+ 5u
2
2u + 1)
· (u
18
2u
16
+ ··· + 7u
2
1)(u
24
+ 5u
23
+ ··· 12u + 3)
c
2
, c
6
(u
10
4u
8
+ 3u
7
+ 12u
6
+ u
5
+ 11u
3
+ 2u
2
2u + 3)
· (u
18
7u
16
+ ··· 2u 13)(u
24
u
23
+ ··· 1976u + 793)
c
3
((u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
4
)(u
10
+ 8u
9
+ ··· + 26u + 3)
· (u
18
13u
17
+ ··· 62u 52)
c
4
(u
2
u + 1)
12
(u
10
+ 4u
8
+ 8u
6
+ 2u
5
+ 10u
4
+ 3u
3
+ 7u
2
+ u + 3)
· (u
18
+ 13u
17
+ ··· + 608u + 64)
c
5
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
4
· (u
10
+ 2u
9
+ 6u
8
+ 8u
7
+ 13u
6
+ 14u
5
+ 15u
4
+ 14u
3
+ 10u
2
+ 7u + 3)
· (u
18
+ 9u
17
+ ··· + 50u + 4)
c
7
, c
11
(u
10
4u
8
+ ··· u + 1)(u
18
+ 2u
17
+ ··· + u + 1)
· (u
24
+ u
23
+ ··· + 198u + 93)
c
8
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
4
· (u
10
2u
9
+ 6u
8
8u
7
+ 13u
6
14u
5
+ 15u
4
14u
3
+ 10u
2
7u + 3)
· (u
18
+ 9u
17
+ ··· + 50u + 4)
c
10
(u
2
u + 1)
12
(u
10
+ 4u
8
+ 8u
6
2u
5
+ 10u
4
3u
3
+ 7u
2
u + 3)
· (u
18
+ 13u
17
+ ··· + 608u + 64)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
9
(y
10
+ 2y
9
+ ··· + 6y + 1)(y
18
4y
17
+ ··· 14y + 1)
· (y
24
+ 3y
23
+ ··· 156y + 9)
c
2
, c
6
(y
10
8y
9
+ ··· + 8y + 9)(y
18
14y
17
+ ··· 1564y + 169)
· (y
24
17y
23
+ ··· 2553304y + 628849)
c
3
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
4
· (y
10
8y
9
+ ··· 178y + 9)(y
18
19y
17
+ ··· + 6660y + 2704)
c
4
, c
10
((y
2
+ y + 1)
12
)(y
10
+ 8y
9
+ ··· + 41y + 9)
· (y
18
+ 9y
17
+ ··· 17408y + 4096)
c
5
, c
8
((y
6
+ 5y
5
+ ··· 5y + 1)
4
)(y
10
+ 8y
9
+ ··· + 11y + 9)
· (y
18
+ 13y
17
+ ··· 364y + 16)
c
7
, c
11
(y
10
8y
9
+ 22y
8
16y
7
15y
6
7y
5
+ 32y
4
+ 40y
3
+ 24y
2
+ 7y + 1)
· (y
18
26y
17
+ ··· 21y + 1)(y
24
25y
23
+ ··· + 40776y + 8649)
18