11n
177
(K11n
177
)
A knot diagram
1
Linearized knot diagam
5 8 1 7 1 10 11 3 4 5 9
Solving Sequence
2,8
3
5,9
1 4 11 7 10 6
c
2
c
8
c
1
c
3
c
11
c
7
c
10
c
6
c
4
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.24572 × 10
142
u
60
+ 1.72689 × 10
142
u
59
+ ··· + 4.07698 × 10
142
b 1.22998 × 10
145
,
2.97918 × 10
145
u
60
+ 1.11595 × 10
145
u
59
+ ··· + 8.60243 × 10
144
a 1.02025 × 10
148
,
u
61
u
60
+ ··· + 1440u 211i
I
u
2
= h−191u
19
54u
18
+ ··· + 871b 1760, 5462u
19
+ 3472u
18
+ ··· + 871a 3488,
u
20
10u
18
+ ··· 3u + 1i
* 2 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.25 × 10
142
u
60
+ 1.73 × 10
142
u
59
+ · · · + 4.08 × 10
142
b 1.23 ×
10
145
, 2.98 × 10
145
u
60
+ 1.12 × 10
145
u
59
+ · · · + 8.60 × 10
144
a 1.02 ×
10
148
, u
61
u
60
+ · · · + 1440u 211i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
3.46318u
60
1.29725u
59
+ ··· 6140.42u + 1186.01
0.796110u
60
0.423570u
59
+ ··· 1559.98u + 301.690
a
9
=
u
u
3
+ u
a
1
=
1.29224u
60
0.448881u
59
+ ··· 2255.76u + 429.617
1.27366u
60
0.370816u
59
+ ··· 2085.03u + 390.903
a
4
=
1.28221u
60
0.453127u
59
+ ··· 2204.36u + 413.438
0.635387u
60
+ 0.249195u
59
+ ··· + 1132.30u 216.875
a
11
=
0.388456u
60
0.195779u
59
+ ··· 775.545u + 151.289
1.67899u
60
0.538031u
59
+ ··· 2818.97u + 531.938
a
7
=
0.630060u
60
+ 0.197657u
59
+ ··· + 1058.49u 208.443
2.03043u
60
+ 0.716573u
59
+ ··· + 3492.84u 661.096
a
10
=
0.747989u
60
+ 0.276535u
59
+ ··· + 1286.06u 236.612
0.433328u
60
0.123845u
59
+ ··· 717.355u + 135.073
a
6
=
1.16771u
60
+ 0.323667u
59
+ ··· + 1929.57u 371.367
1.29217u
60
+ 0.498917u
59
+ ··· + 2268.85u 430.204
a
6
=
1.16771u
60
+ 0.323667u
59
+ ··· + 1929.57u 371.367
1.29217u
60
+ 0.498917u
59
+ ··· + 2268.85u 430.204
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7.66374u
60
+ 2.83409u
59
+ ··· + 13662.1u 2642.77
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
61
+ 2u
60
+ ··· 25u + 1
c
2
, c
8
u
61
u
60
+ ··· + 1440u 211
c
3
u
61
4u
60
+ ··· 957u + 121
c
4
u
61
+ 6u
60
+ ··· + 22u + 1
c
6
u
61
+ 4u
60
+ ··· + 6790u 2531
c
7
u
61
+ u
60
+ ··· 9850u 2333
c
9
u
61
+ 2u
60
+ ··· + 529u + 41
c
10
u
61
10u
59
+ ··· 62973u + 14123
c
11
u
61
4u
60
+ ··· + 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
61
54y
60
+ ··· + 111y 1
c
2
, c
8
y
61
57y
60
+ ··· + 631204y 44521
c
3
y
61
28y
60
+ ··· + 684255y 14641
c
4
y
61
16y
60
+ ··· + 364y 1
c
6
y
61
14y
60
+ ··· + 234688910y 6405961
c
7
y
61
+ 23y
60
+ ··· + 27116488y 5442889
c
9
y
61
+ 52y
59
+ ··· 12653y 1681
c
10
y
61
20y
60
+ ··· + 4161767199y 199459129
c
11
y
61
8y
60
+ ··· + 12y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.976776 + 0.468629I
a = 0.15466 1.57760I
b = 1.360820 + 0.112274I
3.79970 + 5.99586I 0
u = 0.976776 0.468629I
a = 0.15466 + 1.57760I
b = 1.360820 0.112274I
3.79970 5.99586I 0
u = 0.524227 + 0.745772I
a = 0.531624 + 0.534873I
b = 1.50782 0.08700I
2.50680 1.31837I 0
u = 0.524227 0.745772I
a = 0.531624 0.534873I
b = 1.50782 + 0.08700I
2.50680 + 1.31837I 0
u = 0.678087 + 0.569708I
a = 0.116142 0.826864I
b = 0.368363 + 0.027145I
1.88623 2.18277I 0
u = 0.678087 0.569708I
a = 0.116142 + 0.826864I
b = 0.368363 0.027145I
1.88623 + 2.18277I 0
u = 0.868659 + 0.085320I
a = 0.448202 + 1.164690I
b = 0.064748 + 1.346320I
4.49837 0.35042I 4.30932 5.56885I
u = 0.868659 0.085320I
a = 0.448202 1.164690I
b = 0.064748 1.346320I
4.49837 + 0.35042I 4.30932 + 5.56885I
u = 1.127820 + 0.013378I
a = 0.848633 0.329495I
b = 0.484117 + 0.888170I
0.28694 2.95538I 0
u = 1.127820 0.013378I
a = 0.848633 + 0.329495I
b = 0.484117 0.888170I
0.28694 + 2.95538I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.827402 + 0.215446I
a = 0.369344 + 0.142430I
b = 0.572552 0.128270I
1.311000 + 0.288972I 7.97577 + 0.I
u = 0.827402 0.215446I
a = 0.369344 0.142430I
b = 0.572552 + 0.128270I
1.311000 0.288972I 7.97577 + 0.I
u = 0.430791 + 0.712040I
a = 0.206810 0.287330I
b = 0.162616 0.032660I
2.67011 + 1.18908I 3.00000 + 2.70122I
u = 0.430791 0.712040I
a = 0.206810 + 0.287330I
b = 0.162616 + 0.032660I
2.67011 1.18908I 3.00000 2.70122I
u = 1.101970 + 0.412324I
a = 0.694898 0.236565I
b = 0.101449 + 0.170923I
2.45305 5.61811I 0
u = 1.101970 0.412324I
a = 0.694898 + 0.236565I
b = 0.101449 0.170923I
2.45305 + 5.61811I 0
u = 0.725508 + 0.953905I
a = 0.42999 1.48215I
b = 0.16870 + 1.40882I
4.00502 3.50717I 0
u = 0.725508 0.953905I
a = 0.42999 + 1.48215I
b = 0.16870 1.40882I
4.00502 + 3.50717I 0
u = 1.21359
a = 2.56444
b = 1.62558
4.17679 0
u = 1.072200 + 0.597671I
a = 0.029187 0.276448I
b = 0.0817486 + 0.0591173I
0.79598 6.19961I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.072200 0.597671I
a = 0.029187 + 0.276448I
b = 0.0817486 0.0591173I
0.79598 + 6.19961I 0
u = 0.325827 + 0.608474I
a = 0.939738 + 0.068849I
b = 1.142560 + 0.067073I
1.23241 1.81263I 4.83572 + 3.41464I
u = 0.325827 0.608474I
a = 0.939738 0.068849I
b = 1.142560 0.067073I
1.23241 + 1.81263I 4.83572 3.41464I
u = 1.296100 + 0.257994I
a = 1.94339 0.43070I
b = 1.63146 0.09947I
4.62267 + 5.03624I 0
u = 1.296100 0.257994I
a = 1.94339 + 0.43070I
b = 1.63146 + 0.09947I
4.62267 5.03624I 0
u = 1.318920 + 0.232232I
a = 0.289966 0.419451I
b = 0.121333 1.299240I
4.69632 + 0.83070I 0
u = 1.318920 0.232232I
a = 0.289966 + 0.419451I
b = 0.121333 + 1.299240I
4.69632 0.83070I 0
u = 1.355280 + 0.007498I
a = 2.05034 + 0.41832I
b = 1.57888 0.10960I
8.02679 3.97936I 0
u = 1.355280 0.007498I
a = 2.05034 0.41832I
b = 1.57888 + 0.10960I
8.02679 + 3.97936I 0
u = 0.641002 + 0.014713I
a = 0.47554 2.09406I
b = 0.425124 0.689408I
2.15550 2.60300I 3.71097 + 4.89250I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.641002 0.014713I
a = 0.47554 + 2.09406I
b = 0.425124 + 0.689408I
2.15550 + 2.60300I 3.71097 4.89250I
u = 1.380460 + 0.006140I
a = 0.106176 1.042480I
b = 0.152247 + 0.537690I
0.20782 3.93388I 0
u = 1.380460 0.006140I
a = 0.106176 + 1.042480I
b = 0.152247 0.537690I
0.20782 + 3.93388I 0
u = 1.371230 + 0.218015I
a = 1.64543 0.22255I
b = 1.62447 + 0.87740I
8.65446 7.29554I 0
u = 1.371230 0.218015I
a = 1.64543 + 0.22255I
b = 1.62447 0.87740I
8.65446 + 7.29554I 0
u = 0.256892 + 0.520615I
a = 0.962604 + 0.557526I
b = 0.018225 0.428123I
0.17125 + 1.80764I 1.37492 3.40193I
u = 0.256892 0.520615I
a = 0.962604 0.557526I
b = 0.018225 + 0.428123I
0.17125 1.80764I 1.37492 + 3.40193I
u = 0.27863 + 1.40849I
a = 0.172968 0.248864I
b = 1.61867 + 0.35060I
2.68997 + 9.29142I 0
u = 0.27863 1.40849I
a = 0.172968 + 0.248864I
b = 1.61867 0.35060I
2.68997 9.29142I 0
u = 0.16045 + 1.43558I
a = 0.287870 + 0.352022I
b = 1.44542 0.44164I
4.00110 + 1.61857I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.16045 1.43558I
a = 0.287870 0.352022I
b = 1.44542 + 0.44164I
4.00110 1.61857I 0
u = 0.550059
a = 0.221675
b = 1.15486
1.86682 10.5560
u = 1.44832 + 0.14867I
a = 1.62095 + 0.20059I
b = 1.65615 0.59781I
9.14900 1.39395I 0
u = 1.44832 0.14867I
a = 1.62095 0.20059I
b = 1.65615 + 0.59781I
9.14900 + 1.39395I 0
u = 1.48243 + 0.25068I
a = 0.223696 + 0.544024I
b = 0.07169 + 1.80725I
3.01562 + 7.11329I 0
u = 1.48243 0.25068I
a = 0.223696 0.544024I
b = 0.07169 1.80725I
3.01562 7.11329I 0
u = 1.53749 + 0.15211I
a = 1.50614 + 0.01272I
b = 1.68160 + 0.13329I
5.39490 + 4.53513I 0
u = 1.53749 0.15211I
a = 1.50614 0.01272I
b = 1.68160 0.13329I
5.39490 4.53513I 0
u = 0.406916 + 0.168439I
a = 1.25472 5.36486I
b = 0.074077 + 0.800622I
3.77024 4.53103I 8.22458 + 6.69536I
u = 0.406916 0.168439I
a = 1.25472 + 5.36486I
b = 0.074077 0.800622I
3.77024 + 4.53103I 8.22458 6.69536I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.58071
a = 1.63264
b = 1.63455
8.81824 0
u = 1.48930 + 0.55441I
a = 1.50676 + 0.66570I
b = 1.57377 0.77902I
9.28034 8.26953I 0
u = 1.48930 0.55441I
a = 1.50676 0.66570I
b = 1.57377 + 0.77902I
9.28034 + 8.26953I 0
u = 0.112871 + 0.355025I
a = 2.02427 0.38887I
b = 1.322340 + 0.325664I
3.79837 + 4.86090I 6.23298 3.29979I
u = 0.112871 0.355025I
a = 2.02427 + 0.38887I
b = 1.322340 0.325664I
3.79837 4.86090I 6.23298 + 3.29979I
u = 1.53961 + 0.56058I
a = 1.46289 0.60290I
b = 1.72297 + 0.74156I
8.3594 16.0917I 0
u = 1.53961 0.56058I
a = 1.46289 + 0.60290I
b = 1.72297 0.74156I
8.3594 + 16.0917I 0
u = 1.56552 + 0.57554I
a = 1.222210 0.542653I
b = 1.62521 + 0.02936I
9.08401 + 5.81465I 0
u = 1.56552 0.57554I
a = 1.222210 + 0.542653I
b = 1.62521 0.02936I
9.08401 5.81465I 0
u = 2.18540 + 0.57081I
a = 0.915634 + 0.234163I
b = 1.81648 0.11524I
6.95721 + 0.21792I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 2.18540 0.57081I
a = 0.915634 0.234163I
b = 1.81648 + 0.11524I
6.95721 0.21792I 0
11
II. I
u
2
= h−191u
19
54u
18
+ · · · + 871b 1760, 5462u
19
+ 3472u
18
+ · · · +
871a 3488, u
20
10u
18
+ · · · 3u + 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
5
=
6.27095u
19
3.98622u
18
+ ··· 32.5901u + 4.00459
0.219288u
19
+ 0.0619977u
18
+ ··· 1.65557u + 2.02067
a
9
=
u
u
3
+ u
a
1
=
0.299656u
19
0.320321u
18
+ ··· 1.77956u + 5.89323
0.981630u
19
+ 1.08381u
18
+ ··· 0.756602u 2.30540
a
4
=
1.85419u
19
+ 1.60276u
18
+ ··· + 2.68197u 11.7991
2.48680u
19
0.278990u
18
+ ··· + 3.45006u + 3.90700
a
11
=
0.950631u
19
0.912744u
18
+ ··· 0.404133u + 5.69575
1.58553u
19
+ 0.453502u
18
+ ··· 3.25832u 1.51550
a
7
=
2.22044u
19
0.00574053u
18
+ ··· 10.9208u 4.33525
0.576349u
19
0.995408u
18
+ ··· 2.86338u + 3.66820
a
10
=
6.19518u
19
+ 0.515499u
18
+ ··· + 22.0861u + 6.50517
1.36395u
19
+ 0.526980u
18
+ ··· 3.07233u 3.82434
a
6
=
5.14122u
19
2.33180u
18
+ ··· 27.6211u 4.77727
1.31114u
19
+ 0.357061u
18
+ ··· + 0.872560u + 4.45235
a
6
=
5.14122u
19
2.33180u
18
+ ··· 27.6211u 4.77727
1.31114u
19
+ 0.357061u
18
+ ··· + 0.872560u + 4.45235
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9575
871
u
19
+
4001
871
u
18
+ ··· +
38680
871
u
118
871
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
u
19
+ ··· 2u + 1
c
2
u
20
10u
18
+ ··· 3u + 1
c
3
u
20
+ 7u
19
+ ··· 4u 1
c
4
u
20
+ 7u
19
+ ··· + 7u + 1
c
5
u
20
+ u
19
+ ··· + 2u + 1
c
6
u
20
u
19
+ ··· + u + 1
c
7
u
20
+ 2u
17
+ ··· 11u 1
c
8
u
20
10u
18
+ ··· + 3u + 1
c
9
u
20
u
19
+ ··· 2u 1
c
10
u
20
u
19
+ ··· + 5u
2
+ 1
c
11
u
20
11u
19
+ ··· u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
20
5y
19
+ ··· + 14y + 1
c
2
, c
8
y
20
20y
19
+ ··· 23y + 1
c
3
y
20
7y
19
+ ··· + 14y + 1
c
4
y
20
11y
19
+ ··· 3y + 1
c
6
y
20
+ 11y
19
+ ··· 9y + 1
c
7
y
20
30y
18
+ ··· 15y + 1
c
9
y
20
11y
19
+ ··· + 6y + 1
c
10
y
20
+ 9y
19
+ ··· + 10y + 1
c
11
y
20
11y
19
+ ··· 39y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.975094 + 0.192027I
a = 0.228066 1.082830I
b = 0.20852 1.40893I
4.39215 0.76384I 1.31293 + 11.96948I
u = 0.975094 0.192027I
a = 0.228066 + 1.082830I
b = 0.20852 + 1.40893I
4.39215 + 0.76384I 1.31293 11.96948I
u = 0.931948 + 0.448978I
a = 0.042896 + 1.059970I
b = 1.237450 0.120382I
4.41710 6.04390I 11.7885 + 8.3222I
u = 0.931948 0.448978I
a = 0.042896 1.059970I
b = 1.237450 + 0.120382I
4.41710 + 6.04390I 11.7885 8.3222I
u = 0.728972 + 0.834999I
a = 0.53983 + 1.72031I
b = 0.251589 1.291110I
4.20835 + 3.34749I 10.38285 + 6.22702I
u = 0.728972 0.834999I
a = 0.53983 1.72031I
b = 0.251589 + 1.291110I
4.20835 3.34749I 10.38285 6.22702I
u = 0.781597 + 0.045766I
a = 0.17119 + 3.99242I
b = 0.107037 + 0.488805I
3.16335 + 4.45169I 5.12268 4.32037I
u = 0.781597 0.045766I
a = 0.17119 3.99242I
b = 0.107037 0.488805I
3.16335 4.45169I 5.12268 + 4.32037I
u = 1.092230 + 0.544737I
a = 0.291456 0.130127I
b = 0.003042 0.599513I
1.19434 6.17955I 7.14225 + 5.75160I
u = 1.092230 0.544737I
a = 0.291456 + 0.130127I
b = 0.003042 + 0.599513I
1.19434 + 6.17955I 7.14225 5.75160I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.582926 + 0.473640I
a = 0.413367 0.977453I
b = 0.418521 0.651644I
3.01685 + 1.94709I 2.17570 3.84431I
u = 0.582926 0.473640I
a = 0.413367 + 0.977453I
b = 0.418521 + 0.651644I
3.01685 1.94709I 2.17570 + 3.84431I
u = 0.487186 + 0.518657I
a = 1.120760 0.648579I
b = 0.917769 + 0.049096I
1.79922 1.91581I 10.61370 + 5.31696I
u = 0.487186 0.518657I
a = 1.120760 + 0.648579I
b = 0.917769 0.049096I
1.79922 + 1.91581I 10.61370 5.31696I
u = 1.45404 + 0.17577I
a = 1.65356 0.07969I
b = 1.62003 0.16216I
5.99125 + 4.45821I 9.91425 3.94197I
u = 1.45404 0.17577I
a = 1.65356 + 0.07969I
b = 1.62003 + 0.16216I
5.99125 4.45821I 9.91425 + 3.94197I
u = 1.45114 + 0.20138I
a = 0.108068 + 0.828850I
b = 0.100607 0.792711I
0.49537 + 4.42981I 0.62033 12.45769I
u = 1.45114 0.20138I
a = 0.108068 0.828850I
b = 0.100607 + 0.792711I
0.49537 4.42981I 0.62033 + 12.45769I
u = 0.270425
a = 2.72537
b = 1.29057
1.39500 7.03290
u = 2.37105
a = 0.932793
b = 1.85053
7.13067 24.6900
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
20
u
19
+ ··· 2u + 1)(u
61
+ 2u
60
+ ··· 25u + 1)
c
2
(u
20
10u
18
+ ··· 3u + 1)(u
61
u
60
+ ··· + 1440u 211)
c
3
(u
20
+ 7u
19
+ ··· 4u 1)(u
61
4u
60
+ ··· 957u + 121)
c
4
(u
20
+ 7u
19
+ ··· + 7u + 1)(u
61
+ 6u
60
+ ··· + 22u + 1)
c
5
(u
20
+ u
19
+ ··· + 2u + 1)(u
61
+ 2u
60
+ ··· 25u + 1)
c
6
(u
20
u
19
+ ··· + u + 1)(u
61
+ 4u
60
+ ··· + 6790u 2531)
c
7
(u
20
+ 2u
17
+ ··· 11u 1)(u
61
+ u
60
+ ··· 9850u 2333)
c
8
(u
20
10u
18
+ ··· + 3u + 1)(u
61
u
60
+ ··· + 1440u 211)
c
9
(u
20
u
19
+ ··· 2u 1)(u
61
+ 2u
60
+ ··· + 529u + 41)
c
10
(u
20
u
19
+ ··· + 5u
2
+ 1)(u
61
10u
59
+ ··· 62973u + 14123)
c
11
(u
20
11u
19
+ ··· u 1)(u
61
4u
60
+ ··· + 6u + 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
20
5y
19
+ ··· + 14y + 1)(y
61
54y
60
+ ··· + 111y 1)
c
2
, c
8
(y
20
20y
19
+ ··· 23y + 1)(y
61
57y
60
+ ··· + 631204y 44521)
c
3
(y
20
7y
19
+ ··· + 14y + 1)(y
61
28y
60
+ ··· + 684255y 14641)
c
4
(y
20
11y
19
+ ··· 3y + 1)(y
61
16y
60
+ ··· + 364y 1)
c
6
(y
20
+ 11y
19
+ ··· 9y + 1)
· (y
61
14y
60
+ ··· + 234688910y 6405961)
c
7
(y
20
30y
18
+ ··· 15y + 1)
· (y
61
+ 23y
60
+ ··· + 27116488y 5442889)
c
9
(y
20
11y
19
+ ··· + 6y + 1)(y
61
+ 52y
59
+ ··· 12653y 1681)
c
10
(y
20
+ 9y
19
+ ··· + 10y + 1)
· (y
61
20y
60
+ ··· + 4161767199y 199459129)
c
11
(y
20
11y
19
+ ··· 39y + 1)(y
61
8y
60
+ ··· + 12y 1)
18