11n
179
(K11n
179
)
A knot diagram
1
Linearized knot diagam
6 11 1 7 1 10 4 11 7 2 8
Solving Sequence
1,4 3,8
7 5 6 11 9 2 10
c
3
c
7
c
4
c
5
c
11
c
8
c
2
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−30442u
14
+ 342325u
13
+ ··· + 44456b + 31712, 991u
14
+ 44316u
13
+ ··· + 44456a 908664,
u
15
14u
14
+ ··· + 464u 32i
I
u
2
= h−203u
17
446u
16
+ ··· + 16b 99, 99u
17
a 1285u
17
+ ··· + 606a 2283,
u
18
+ 3u
17
+ ··· + 9u + 1i
I
u
3
= h−52u
6
135u
5
299u
4
528u
3
706u
2
+ 109b 172u 1,
u
6
55u
5
142u
4
312u
3
546u
2
+ 109a 716u 174,
u
7
+ 3u
6
+ 7u
5
+ 13u
4
+ 18u
3
+ 10u
2
+ 2u 1i
I
u
4
= hau + b + u 1, u
2
a + a
2
2au + u
2
+ 2a 3u + 3, u
3
2u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 64 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.04×10
4
u
14
+3.42×10
5
u
13
+· · ·+4.45×10
4
b+3.17×10
4
, 991u
14
+
44316u
13
+ · · · + 44456a 908664, u
15
14u
14
+ · · · + 464u 32i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
0.0222917u
14
0.996851u
13
+ ··· 194.288u + 20.4396
0.684767u
14
7.70031u
13
+ ··· 10.0963u 0.713335
a
7
=
0.707059u
14
8.69716u
13
+ ··· 204.384u + 19.7263
0.684767u
14
7.70031u
13
+ ··· 10.0963u 0.713335
a
5
=
0.120299u
14
+ 1.65732u
13
+ ··· + 85.8621u 8.43756
0.516758u
14
+ 6.69100u
13
+ ··· + 180.708u 12.6867
a
6
=
0.120299u
14
+ 1.65732u
13
+ ··· + 85.8621u 8.43756
0.692325u
14
+ 8.57538u
13
+ ··· + 172.095u 11.8272
a
11
=
0.396459u
14
+ 5.03367u
13
+ ··· + 94.8459u 3.24915
0.516758u
14
6.69100u
13
+ ··· 179.708u + 12.6867
a
9
=
2.35699u
14
+ 29.2392u
13
+ ··· + 550.379u 31.2776
1.87224u
14
24.4648u
13
+ ··· 743.922u + 53.5112
a
2
=
0.442392u
14
5.28185u
13
+ ··· 76.6178u + 5.65350
0.736076u
14
+ 9.23090u
13
+ ··· + 209.229u 15.0160
a
10
=
2.04145u
14
+ 25.4828u
13
+ ··· + 540.956u 35.1522
1.84779u
14
23.4858u
13
+ ··· 593.170u + 42.6315
a
10
=
2.04145u
14
+ 25.4828u
13
+ ··· + 540.956u 35.1522
1.84779u
14
23.4858u
13
+ ··· 593.170u + 42.6315
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6047
11114
u
14
+
56269
11114
u
13
+ ···
448754
5557
u
32342
5557
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
u
15
5u
13
+ ··· + 3u + 1
c
3
u
15
14u
14
+ ··· + 464u 32
c
4
, c
7
, c
8
c
11
u
15
u
14
+ ··· + 4u
2
+ 1
c
6
, c
9
u
15
8u
14
+ ··· 56u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
15
10y
14
+ ··· + 29y 1
c
3
y
15
+ 4y
14
+ ··· + 67328y 1024
c
4
, c
7
, c
8
c
11
y
15
+ 7y
14
+ ··· 8y 1
c
6
, c
9
y
15
+ 8y
14
+ ··· + 224y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.441017 + 0.682615I
a = 0.626506 0.383690I
b = 0.014387 + 0.596876I
1.16432 + 1.11480I 3.42758 4.27035I
u = 0.441017 0.682615I
a = 0.626506 + 0.383690I
b = 0.014387 0.596876I
1.16432 1.11480I 3.42758 + 4.27035I
u = 1.360540 + 0.261249I
a = 0.645886 0.354688I
b = 0.786092 + 0.651305I
1.20190 + 2.43151I 0.902369 0.814710I
u = 1.360540 0.261249I
a = 0.645886 + 0.354688I
b = 0.786092 0.651305I
1.20190 2.43151I 0.902369 + 0.814710I
u = 0.231740 + 1.386460I
a = 0.727304 + 0.321329I
b = 0.614054 + 0.933909I
7.18561 1.74581I 4.31703 + 3.15532I
u = 0.231740 1.386460I
a = 0.727304 0.321329I
b = 0.614054 0.933909I
7.18561 + 1.74581I 4.31703 3.15532I
u = 1.38613 + 0.32674I
a = 0.553085 + 0.614738I
b = 0.565792 1.032820I
0.37742 3.22470I 1.69059 + 1.81692I
u = 1.38613 0.32674I
a = 0.553085 0.614738I
b = 0.565792 + 1.032820I
0.37742 + 3.22470I 1.69059 1.81692I
u = 1.03444 + 1.15733I
a = 0.878543 + 0.103476I
b = 0.789042 1.123810I
0.98276 7.96105I 1.19655 + 6.90467I
u = 1.03444 1.15733I
a = 0.878543 0.103476I
b = 0.789042 + 1.123810I
0.98276 + 7.96105I 1.19655 6.90467I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.122764
a = 5.00969
b = 0.615011
1.24987 10.6530
u = 1.41089 + 1.28897I
a = 0.730743 0.221034I
b = 0.74609 + 1.25376I
4.8601 14.7989I 2.41187 + 8.28326I
u = 1.41089 1.28897I
a = 0.730743 + 0.221034I
b = 0.74609 1.25376I
4.8601 + 14.7989I 2.41187 8.28326I
u = 1.07386 + 2.16285I
a = 0.293966 + 0.146746I
b = 0.001713 0.793388I
6.23698 + 3.49716I 6.18530 1.96585I
u = 1.07386 2.16285I
a = 0.293966 0.146746I
b = 0.001713 + 0.793388I
6.23698 3.49716I 6.18530 + 1.96585I
6
II. I
u
2
= h−203u
17
446u
16
+ · · · + 16b 99, 99u
17
a 1285u
17
+ · · · +
606a 2283, u
18
+ 3u
17
+ · · · + 9u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
a
12.6875u
17
+ 27.8750u
16
+ ··· + 93.5625u + 6.18750
a
7
=
203
16
u
17
+
223
8
u
16
+ ··· + a +
99
16
12.6875u
17
+ 27.8750u
16
+ ··· + 93.5625u + 6.18750
a
5
=
10.1875au
17
49.5625u
17
+ ··· 12.6875a 109.375
10.1875au
17
10.8125u
17
+ ··· 12.6875a 30.0625
a
6
=
10.1875au
17
49.5625u
17
+ ··· 12.6875a 109.375
6u
17
a u
17
+ ···
95
16
a 8
a
11
=
12.6875au
17
38.7500u
17
+ ··· 6.18750a 80.3125
17.6875u
17
+ 45.1875u
16
+ ··· + 269.438u + 38.7500
a
9
=
10.8125au
17
+ 102.938u
17
+ ··· 29.0625a + 256.750
7.87500au
17
+ 12.6875u
17
+ ··· 17.6875a + 6.18750
a
2
=
29.6875au
17
4.12500u
17
+ ··· 64.6250a + 32.9375
7u
17
a
109
8
u
17
+ ···
119
8
a
611
16
a
10
=
8.43750au
17
+ 100.625u
17
+ ··· 10.3750a + 254.688
3.50000au
17
+ 10.3750u
17
+ ··· 15.6875a + 4.12500
a
10
=
8.43750au
17
+ 100.625u
17
+ ··· 10.3750a + 254.688
3.50000au
17
+ 10.3750u
17
+ ··· 15.6875a + 4.12500
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
371
4
u
17
+ 247u
16
+
41
4
u
15
3345
4
u
14
4809
4
u
13
1271u
12
+
1677
4
u
11
+
23513
4
u
10
+ 6462u
9
13723
2
u
8
21065
2
u
7
+
13659
2
u
6
+
38345
4
u
5
6133
2
u
4
13047
4
u
3
+
7575
4
u
2
+ 1672u +
585
2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
u
36
10u
34
+ ··· + 503u + 161
c
3
(u
18
+ 3u
17
+ ··· + 9u + 1)
2
c
4
, c
7
, c
8
c
11
u
36
2u
35
+ ··· 151u + 47
c
6
, c
9
(u
18
+ 3u
17
+ ··· + 4u + 5)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
36
20y
35
+ ··· 295835y + 25921
c
3
(y
18
7y
17
+ ··· 31y + 1)
2
c
4
, c
7
, c
8
c
11
y
36
+ 16y
35
+ ··· + 18277y + 2209
c
6
, c
9
(y
18
+ 11y
17
+ ··· + 174y + 25)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.894501 + 0.439989I
a = 1.068970 0.589062I
b = 1.172180 0.401841I
2.21070 8.01702I 0.26506 + 6.04046I
u = 0.894501 + 0.439989I
a = 0.877218 + 0.880723I
b = 0.697017 + 0.997253I
2.21070 8.01702I 0.26506 + 6.04046I
u = 0.894501 0.439989I
a = 1.068970 + 0.589062I
b = 1.172180 + 0.401841I
2.21070 + 8.01702I 0.26506 6.04046I
u = 0.894501 0.439989I
a = 0.877218 0.880723I
b = 0.697017 0.997253I
2.21070 + 8.01702I 0.26506 6.04046I
u = 0.950537 + 0.162221I
a = 0.971317 + 0.562568I
b = 0.732831 + 0.297516I
1.79766 + 2.11512I 3.46832 4.22083I
u = 0.950537 + 0.162221I
a = 0.697241 + 0.431990I
b = 0.832013 + 0.692310I
1.79766 + 2.11512I 3.46832 4.22083I
u = 0.950537 0.162221I
a = 0.971317 0.562568I
b = 0.732831 0.297516I
1.79766 2.11512I 3.46832 + 4.22083I
u = 0.950537 0.162221I
a = 0.697241 0.431990I
b = 0.832013 0.692310I
1.79766 2.11512I 3.46832 + 4.22083I
u = 0.550574 + 0.534542I
a = 1.151550 + 0.184083I
b = 1.137440 + 0.607496I
0.695457 1.211150I 2.01684 + 5.97065I
u = 0.550574 + 0.534542I
a = 0.51202 1.60050I
b = 0.535612 0.716902I
0.695457 1.211150I 2.01684 + 5.97065I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.550574 0.534542I
a = 1.151550 0.184083I
b = 1.137440 0.607496I
0.695457 + 1.211150I 2.01684 5.97065I
u = 0.550574 0.534542I
a = 0.51202 + 1.60050I
b = 0.535612 + 0.716902I
0.695457 + 1.211150I 2.01684 5.97065I
u = 0.559442 + 0.038809I
a = 1.60100 + 1.20636I
b = 0.620068 + 1.024030I
0.388234 1.127970I 1.85464 + 1.58148I
u = 0.559442 + 0.038809I
a = 0.97669 + 1.89819I
b = 0.848848 + 0.737023I
0.388234 1.127970I 1.85464 + 1.58148I
u = 0.559442 0.038809I
a = 1.60100 1.20636I
b = 0.620068 1.024030I
0.388234 + 1.127970I 1.85464 1.58148I
u = 0.559442 0.038809I
a = 0.97669 1.89819I
b = 0.848848 0.737023I
0.388234 + 1.127970I 1.85464 1.58148I
u = 1.20149 + 0.95062I
a = 0.794303 + 0.267048I
b = 0.590660 0.737715I
0.58133 + 3.63224I 1.22357 0.72654I
u = 1.20149 + 0.95062I
a = 0.601110 0.138403I
b = 0.700489 + 1.075930I
0.58133 + 3.63224I 1.22357 0.72654I
u = 1.20149 0.95062I
a = 0.794303 0.267048I
b = 0.590660 + 0.737715I
0.58133 3.63224I 1.22357 + 0.72654I
u = 1.20149 0.95062I
a = 0.601110 + 0.138403I
b = 0.700489 1.075930I
0.58133 3.63224I 1.22357 + 0.72654I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.57847 + 0.07406I
a = 0.056442 0.945021I
b = 0.253884 + 0.746014I
8.78344 + 0.53962I 4.04425 + 2.43806I
u = 1.57847 + 0.07406I
a = 0.182614 0.464051I
b = 0.01910 + 1.49587I
8.78344 + 0.53962I 4.04425 + 2.43806I
u = 1.57847 0.07406I
a = 0.056442 + 0.945021I
b = 0.253884 0.746014I
8.78344 0.53962I 4.04425 2.43806I
u = 1.57847 0.07406I
a = 0.182614 + 0.464051I
b = 0.01910 1.49587I
8.78344 0.53962I 4.04425 2.43806I
u = 0.305821 + 0.029607I
a = 0.52691 + 2.98749I
b = 0.20657 1.64071I
9.40827 2.73362I 5.19032 + 6.28765I
u = 0.305821 + 0.029607I
a = 1.18377 5.25035I
b = 0.249590 + 0.898036I
9.40827 2.73362I 5.19032 + 6.28765I
u = 0.305821 0.029607I
a = 0.52691 2.98749I
b = 0.20657 + 1.64071I
9.40827 + 2.73362I 5.19032 6.28765I
u = 0.305821 0.029607I
a = 1.18377 + 5.25035I
b = 0.249590 0.898036I
9.40827 + 2.73362I 5.19032 6.28765I
u = 0.08820 + 1.71388I
a = 0.440400 + 0.416925I
b = 0.047819 + 0.888995I
6.66136 + 3.28569I 5.54170 2.88739I
u = 0.08820 + 1.71388I
a = 0.518764 + 0.001204I
b = 0.675718 0.791567I
6.66136 + 3.28569I 5.54170 2.88739I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.08820 1.71388I
a = 0.440400 0.416925I
b = 0.047819 0.888995I
6.66136 3.28569I 5.54170 + 2.88739I
u = 0.08820 1.71388I
a = 0.518764 0.001204I
b = 0.675718 + 0.791567I
6.66136 3.28569I 5.54170 + 2.88739I
u = 1.59445 + 1.02172I
a = 0.595268 0.396932I
b = 0.754617 + 0.978635I
1.11892 + 7.08645I 2.27907 7.07165I
u = 1.59445 + 1.02172I
a = 0.614327 + 0.220117I
b = 0.543574 1.241090I
1.11892 + 7.08645I 2.27907 7.07165I
u = 1.59445 1.02172I
a = 0.595268 + 0.396932I
b = 0.754617 0.978635I
1.11892 7.08645I 2.27907 + 7.07165I
u = 1.59445 1.02172I
a = 0.614327 0.220117I
b = 0.543574 + 1.241090I
1.11892 7.08645I 2.27907 + 7.07165I
13
III. I
u
3
= h−52u
6
135u
5
+ · · · + 109b 1, u
6
55u
5
+ · · · + 109a
174, u
7
+ 3u
6
+ 7u
5
+ 13u
4
+ 18u
3
+ 10u
2
+ 2u 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
0.00917431u
6
+ 0.504587u
5
+ ··· + 6.56881u + 1.59633
0.477064u
6
+ 1.23853u
5
+ ··· + 1.57798u + 0.00917431
a
7
=
0.486239u
6
+ 1.74312u
5
+ ··· + 8.14679u + 1.60550
0.477064u
6
+ 1.23853u
5
+ ··· + 1.57798u + 0.00917431
a
5
=
0.339450u
6
0.669725u
5
+ ··· + 2.95413u + 2.93578
0.100917u
6
+ 0.550459u
5
+ ··· + 3.25688u 0.440367
a
6
=
0.339450u
6
0.669725u
5
+ ··· + 2.95413u + 2.93578
0.0275229u
6
+ 0.486239u
5
+ ··· + 4.29358u 0.788991
a
11
=
0.440367u
6
1.22018u
5
+ ··· 0.302752u + 2.37615
0.100917u
6
+ 0.550459u
5
+ ··· + 4.25688u 0.440367
a
9
=
0.899083u
6
+ 2.44954u
5
+ ··· + 6.74312u + 2.44037
0.440367u
6
1.22018u
5
+ ··· 0.302752u + 1.37615
a
2
=
1.33945u
6
+ 3.66972u
5
+ ··· + 7.04587u + 0.0642202
0.220183u
6
1.11009u
5
+ ··· 4.65138u + 1.68807
a
10
=
0.889908u
6
+ 1.94495u
5
+ ··· + 0.174312u 0.155963
0.788991u
6
2.39450u
5
+ ··· 3.91743u + 1.71560
a
10
=
0.889908u
6
+ 1.94495u
5
+ ··· + 0.174312u 0.155963
0.788991u
6
2.39450u
5
+ ··· 3.91743u + 1.71560
(ii) Obstruction class = 1
(iii) Cusp Shapes =
56
109
u
6
246
109
u
5
431
109
u
4
904
109
u
3
1146
109
u
2
856
109
u +
611
109
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
7
2u
5
2u
4
+ u
3
+ 2u
2
+ 2u + 1
c
2
, c
5
u
7
2u
5
+ 2u
4
+ u
3
2u
2
+ 2u 1
c
3
u
7
+ 3u
6
+ 7u
5
+ 13u
4
+ 18u
3
+ 10u
2
+ 2u 1
c
4
, c
8
u
7
u
6
+ 3u
5
2u
4
+ 3u
3
u
2
+ u 1
c
6
u
7
u
6
+ 3u
5
2u
4
+ u
3
u
2
u 1
c
7
, c
11
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 3u
3
+ u
2
+ u + 1
c
9
u
7
+ u
6
+ 3u
5
+ 2u
4
+ u
3
+ u
2
u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
7
4y
6
+ 6y
5
4y
4
+ y
3
+ 4y
2
1
c
3
y
7
+ 5y
6
+ 7y
5
+ 27y
4
+ 98y
3
2y
2
+ 24y 1
c
4
, c
7
, c
8
c
11
y
7
+ 5y
6
+ 11y
5
+ 14y
4
+ 9y
3
+ y
2
y 1
c
6
, c
9
y
7
+ 5y
6
+ 7y
5
2y
4
11y
3
7y
2
y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.508137 + 0.486029I
a = 1.22583 + 1.38607I
b = 0.050784 1.300110I
11.34660 + 1.05141I 8.13453 0.52743I
u = 0.508137 0.486029I
a = 1.22583 1.38607I
b = 0.050784 + 1.300110I
11.34660 1.05141I 8.13453 + 0.52743I
u = 1.35766 + 0.93784I
a = 0.676700 + 0.313046I
b = 0.625140 1.059640I
0.00156 + 5.16496I 0.90846 5.47109I
u = 1.35766 0.93784I
a = 0.676700 0.313046I
b = 0.625140 + 1.059640I
0.00156 5.16496I 0.90846 + 5.47109I
u = 0.203752
a = 3.16933
b = 0.645755
0.607992 3.49110
u = 0.26392 + 1.89105I
a = 0.317866 + 0.254422I
b = 0.397234 + 0.668248I
5.40832 + 4.21557I 0.78856 7.31442I
u = 0.26392 1.89105I
a = 0.317866 0.254422I
b = 0.397234 0.668248I
5.40832 4.21557I 0.78856 + 7.31442I
17
IV. I
u
4
= hau + b + u 1, u
2
a + a
2
2au + u
2
+ 2a 3u + 3, u
3
2u
2
+ u + 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
a
au u + 1
a
7
=
au + a u + 1
au u + 1
a
5
=
u
2
a au
u
2
a au + u
2
2u
a
6
=
u
2
a au
au + u
2
+ a 2u
a
11
=
au + u
2
+ a 2u + 1
u + 1
a
9
=
u
2
a 2au + u
2
+ a 2u + 2
u
2
a u + 1
a
2
=
u
2
a au + 1
2u
2
a + 3au u
2
+ 2a + u + 1
a
10
=
u
2
a 2au + u
2
2u + 1
2u
2
a au a u
a
10
=
u
2
a 2au + u
2
2u + 1
2u
2
a au a u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 6u + 1
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
6
+ 3u
5
+ u
4
3u
3
u
2
+ u + 1
c
2
, c
5
u
6
3u
5
+ u
4
+ 3u
3
u
2
u + 1
c
3
(u
3
2u
2
+ u + 1)
2
c
4
, c
8
u
6
u
5
+ 3u
4
3u
3
+ 3u
2
u + 1
c
6
(u
3
+ u 1)
2
c
7
, c
11
u
6
+ u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ u + 1
c
9
(u
3
+ u + 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
y
6
7y
5
+ 17y
4
15y
3
+ 9y
2
3y + 1
c
3
(y
3
2y
2
+ 5y 1)
2
c
4
, c
7
, c
8
c
11
y
6
+ 5y
5
+ 9y
4
+ 9y
3
+ 9y
2
+ 5y + 1
c
6
, c
9
(y
3
+ 2y
2
+ y 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.23279 + 0.79255I
a = 0.632657 0.782837I
b = 0.073295 + 0.673932I
8.79110 + 1.58317I 4.83023 3.06106I
u = 1.23279 + 0.79255I
a = 0.206606 + 0.413848I
b = 0.15949 1.46648I
8.79110 + 1.58317I 4.83023 3.06106I
u = 1.23279 0.79255I
a = 0.632657 + 0.782837I
b = 0.073295 0.673932I
8.79110 1.58317I 4.83023 + 3.06106I
u = 1.23279 0.79255I
a = 0.206606 0.413848I
b = 0.15949 + 1.46648I
8.79110 1.58317I 4.83023 + 3.06106I
u = 0.465571
a = 1.57395 + 1.46156I
b = 0.732786 + 0.680460I
1.13287 2.66050
u = 0.465571
a = 1.57395 1.46156I
b = 0.732786 0.680460I
1.13287 2.66050
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
6
+ 3u
5
+ u
4
3u
3
u
2
+ u + 1)(u
7
2u
5
2u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
15
5u
13
+ ··· + 3u + 1)(u
36
10u
34
+ ··· + 503u + 161)
c
2
, c
5
(u
6
3u
5
+ u
4
+ 3u
3
u
2
u + 1)(u
7
2u
5
+ 2u
4
+ u
3
2u
2
+ 2u 1)
· (u
15
5u
13
+ ··· + 3u + 1)(u
36
10u
34
+ ··· + 503u + 161)
c
3
(u
3
2u
2
+ u + 1)
2
(u
7
+ 3u
6
+ 7u
5
+ 13u
4
+ 18u
3
+ 10u
2
+ 2u 1)
· (u
15
14u
14
+ ··· + 464u 32)(u
18
+ 3u
17
+ ··· + 9u + 1)
2
c
4
, c
8
(u
6
u
5
+ 3u
4
3u
3
+ 3u
2
u + 1)
· (u
7
u
6
+ ··· + u 1)(u
15
u
14
+ ··· + 4u
2
+ 1)
· (u
36
2u
35
+ ··· 151u + 47)
c
6
(u
3
+ u 1)
2
(u
7
u
6
+ 3u
5
2u
4
+ u
3
u
2
u 1)
· (u
15
8u
14
+ ··· 56u + 8)(u
18
+ 3u
17
+ ··· + 4u + 5)
2
c
7
, c
11
(u
6
+ u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ u + 1)
· (u
7
+ u
6
+ ··· + u + 1)(u
15
u
14
+ ··· + 4u
2
+ 1)
· (u
36
2u
35
+ ··· 151u + 47)
c
9
(u
3
+ u + 1)
2
(u
7
+ u
6
+ 3u
5
+ 2u
4
+ u
3
+ u
2
u + 1)
· (u
15
8u
14
+ ··· 56u + 8)(u
18
+ 3u
17
+ ··· + 4u + 5)
2
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
(y
6
7y
5
+ 17y
4
15y
3
+ 9y
2
3y + 1)
· (y
7
4y
6
+ ··· + 4y
2
1)(y
15
10y
14
+ ··· + 29y 1)
· (y
36
20y
35
+ ··· 295835y + 25921)
c
3
((y
3
2y
2
+ 5y 1)
2
)(y
7
+ 5y
6
+ ··· + 24y 1)
· (y
15
+ 4y
14
+ ··· + 67328y 1024)(y
18
7y
17
+ ··· 31y + 1)
2
c
4
, c
7
, c
8
c
11
(y
6
+ 5y
5
+ 9y
4
+ 9y
3
+ 9y
2
+ 5y + 1)
· (y
7
+ 5y
6
+ ··· y 1)(y
15
+ 7y
14
+ ··· 8y 1)
· (y
36
+ 16y
35
+ ··· + 18277y + 2209)
c
6
, c
9
(y
3
+ 2y
2
+ y 1)
2
(y
7
+ 5y
6
+ 7y
5
2y
4
11y
3
7y
2
y 1)
· (y
15
+ 8y
14
+ ··· + 224y 64)(y
18
+ 11y
17
+ ··· + 174y + 25)
2
23