11n
180
(K11n
180
)
A knot diagram
1
Linearized knot diagam
6 8 1 9 10 1 4 2 5 4 8
Solving Sequence
1,4 3,8
2 9 7 6 11 10 5
c
3
c
2
c
8
c
7
c
6
c
11
c
10
c
5
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h4u
15
51u
14
+ ··· + 4b 164, 41u
15
+ 460u
14
+ ··· + 32a + 944, u
16
12u
15
+ ··· 360u
2
+ 32i
I
u
2
= hu
8
+ 2u
7
+ 3u
2
+ b + 1, u
8
2u
7
+ u
6
+ 2u
5
u
4
2u
3
2u
2
+ a + u,
u
9
+ 3u
8
+ u
7
2u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 1i
I
u
3
= h39a
9
u 16a
8
u + ··· + 108a + 311, a
9
u + 8a
8
u + ··· 58a + 53, u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h4u
15
51u
14
+ · · · + 4b 164, 41u
15
+ 460u
14
+ · · · + 32a +
944, u
16
12u
15
+ · · · 360u
2
+ 32i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
41
32
u
15
115
8
u
14
+ ··· 17u
59
2
u
15
+
51
4
u
14
+ ··· +
59
2
u + 41
a
2
=
1
32
u
15
+
5
16
u
14
+ ···
45
8
u
2
+ 1
1
16
u
15
5
8
u
14
+ ··· +
41
4
u
2
1
a
9
=
7
16
u
15
51
16
u
14
+ ··· +
47
4
u +
15
2
101
16
u
15
+
519
8
u
14
+ ··· +
79
2
u + 102
a
7
=
9
32
u
15
13
8
u
14
+ ··· +
25
2
u +
23
2
u
15
+
51
4
u
14
+ ··· +
59
2
u + 41
a
6
=
9
32
u
15
13
8
u
14
+ ··· +
25
2
u +
23
2
11
2
u
15
+ 58u
14
+ ··· +
77
2
u + 97
a
11
=
31
32
u
15
+
171
16
u
14
+ ··· + 31u + 31
15
16
u
15
83
8
u
14
+ ··· 30u 31
a
10
=
1
32
u
15
+
5
16
u
14
+ ···
45
8
u
2
+ u
15
16
u
15
83
8
u
14
+ ··· 30u 31
a
5
=
33
16
u
15
+
41
2
u
14
+ ··· + u + 26
11
4
u
15
223
8
u
14
+ ··· 11u 40
a
5
=
33
16
u
15
+
41
2
u
14
+ ··· + u + 26
11
4
u
15
223
8
u
14
+ ··· 11u 40
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
15
+ 56u
14
242u
13
+ 661u
12
1316u
11
+ 2028u
10
2382u
9
+ 1918u
8
581u
7
1069u
6
+ 2137u
5
2069u
4
+ 1166u
3
265u
2
60u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
16
+ 3u
14
+ ··· 3u 1
c
3
u
16
12u
15
+ ··· 360u
2
+ 32
c
4
, c
5
, c
9
u
16
5u
15
+ ··· 10u 4
c
7
, c
11
u
16
+ u
15
+ ··· 4u 1
c
10
u
16
+ 15u
15
+ ··· + 1722u + 196
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
16
+ 6y
15
+ ··· 5y + 1
c
3
y
16
10y
15
+ ··· 23040y + 1024
c
4
, c
5
, c
9
y
16
15y
15
+ ··· 140y + 16
c
7
, c
11
y
16
27y
15
+ ··· 36y + 1
c
10
y
16
3y
15
+ ··· 394156y + 38416
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.937606
a = 0.432873
b = 0.405864
5.72940 16.4540
u = 0.646210 + 0.969563I
a = 0.294430 + 0.642409I
b = 0.813119 0.129662I
0.44623 2.35749I 11.39443 + 1.24540I
u = 0.646210 0.969563I
a = 0.294430 0.642409I
b = 0.813119 + 0.129662I
0.44623 + 2.35749I 11.39443 1.24540I
u = 0.132048 + 1.204660I
a = 0.014404 0.499826I
b = 0.604023 + 0.048649I
2.97261 + 1.81783I 9.12623 4.02809I
u = 0.132048 1.204660I
a = 0.014404 + 0.499826I
b = 0.604023 0.048649I
2.97261 1.81783I 9.12623 + 4.02809I
u = 1.312260 + 0.342243I
a = 1.36980 0.44221I
b = 1.94888 + 0.11150I
11.54010 0.83768I 14.6260 + 5.7551I
u = 1.312260 0.342243I
a = 1.36980 + 0.44221I
b = 1.94888 0.11150I
11.54010 + 0.83768I 14.6260 5.7551I
u = 0.27007 + 1.38948I
a = 0.071515 + 0.368633I
b = 0.531520 + 0.000186I
1.44057 + 5.86096I 14.3345 7.4758I
u = 0.27007 1.38948I
a = 0.071515 0.368633I
b = 0.531520 0.000186I
1.44057 5.86096I 14.3345 + 7.4758I
u = 1.45999 + 0.54919I
a = 1.051980 + 0.234978I
b = 1.66492 + 0.23467I
3.42042 3.44951I 11.26032 + 2.20716I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45999 0.54919I
a = 1.051980 0.234978I
b = 1.66492 0.23467I
3.42042 + 3.44951I 11.26032 2.20716I
u = 1.61124 + 0.53845I
a = 1.041830 0.051732I
b = 1.70649 0.47762I
2.13858 8.47484I 10.02725 + 6.22402I
u = 1.61124 0.53845I
a = 1.041830 + 0.051732I
b = 1.70649 + 0.47762I
2.13858 + 8.47484I 10.02725 6.22402I
u = 1.68493 + 0.47840I
a = 1.090820 0.055715I
b = 1.81129 + 0.61572I
7.9978 12.6965I 13.6924 + 6.6132I
u = 1.68493 0.47840I
a = 1.090820 + 0.055715I
b = 1.81129 0.61572I
7.9978 + 12.6965I 13.6924 6.6132I
u = 0.215621
a = 1.31222
b = 0.282943
0.531160 18.6230
6
II. I
u
2
= hu
8
+ 2u
7
+ 3u
2
+ b + 1, u
8
2u
7
+ · · · + a + u, u
9
+ 3u
8
+ u
7
2u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u
2
a
8
=
u
8
+ 2u
7
u
6
2u
5
+ u
4
+ 2u
3
+ 2u
2
u
u
8
2u
7
3u
2
1
a
2
=
u
8
3u
7
u
6
+ 2u
5
u
4
2u
3
2u
2
2u + 1
u
2
+ 1
a
9
=
u
8
+ 3u
7
+ 2u
6
u
5
2u
4
+ u
3
+ 4u
2
+ u + 1
u
7
+ 2u
6
u
5
u
4
+ 2u
3
+ u
a
7
=
u
6
2u
5
+ u
4
+ 2u
3
u
2
u 1
u
8
2u
7
3u
2
1
a
6
=
u
6
2u
5
+ u
4
+ 2u
3
u
2
u 1
u
6
2u
5
+ u
4
+ u
3
2u
2
1
a
11
=
u
7
+ 2u
6
u
5
u
4
+ 2u
3
+ 2u
u
8
+ 2u
7
u
6
u
5
+ 2u
4
+ 2u
2
+ u
a
10
=
u
8
+ 3u
7
+ u
6
2u
5
+ u
4
+ 2u
3
+ 2u
2
+ 3u
u
8
+ 2u
7
u
6
u
5
+ 2u
4
+ 2u
2
+ u
a
5
=
u
8
2u
7
+ u
6
+ u
5
2u
4
+ u
3
u
u
8
+ 2u
7
u
6
2u
5
+ u
4
+ 2u
3
+ 2u
2
u + 1
a
5
=
u
8
2u
7
+ u
6
+ u
5
2u
4
+ u
3
u
u
8
+ 2u
7
u
6
2u
5
+ u
4
+ 2u
3
+ 2u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
9u
7
+ 3u
6
+ 10u
5
5u
4
5u
3
4u
2
2u 5
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
9
+ 3u
7
+ u
6
+ 2u
5
+ 2u
4
u
3
+ u
2
u 1
c
2
, c
6
u
9
+ 3u
7
u
6
+ 2u
5
2u
4
u
3
u
2
u + 1
c
3
u
9
+ 3u
8
+ u
7
2u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 1
c
4
, c
5
u
9
5u
7
+ 8u
5
+ u
4
3u
3
2u
2
2u + 1
c
7
, c
11
u
9
u
8
u
7
u
6
2u
5
+ 2u
4
u
3
+ 3u
2
+ 1
c
9
u
9
5u
7
+ 8u
5
u
4
3u
3
+ 2u
2
2u 1
c
10
u
9
u
7
+ 8u
6
4u
5
+ 5u
4
2u
3
+ 3u
2
2u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
9
+ 6y
8
+ 13y
7
+ 9y
6
8y
5
16y
4
5y
3
+ 5y
2
+ 3y 1
c
3
y
9
7y
8
+ 15y
7
10y
6
+ y
5
+ 2y
4
8y
2
4y 1
c
4
, c
5
, c
9
y
9
10y
8
+ 41y
7
86y
6
+ 90y
5
29y
4
19y
3
+ 6y
2
+ 8y 1
c
7
, c
11
y
9
3y
8
5y
7
+ 5y
6
+ 16y
5
+ 8y
4
9y
3
13y
2
6y 1
c
10
y
9
2y
8
7y
7
60y
6
64y
5
53y
4
+ 6y
3
+ 9y
2
+ 10y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.901563 + 0.564856I
a = 0.432004 + 0.508675I
b = 0.102151 + 0.702622I
1.79239 1.81153I 9.80943 + 3.54546I
u = 0.901563 0.564856I
a = 0.432004 0.508675I
b = 0.102151 0.702622I
1.79239 + 1.81153I 9.80943 3.54546I
u = 0.291663 + 0.753926I
a = 0.866867 0.853127I
b = 0.390361 + 0.902380I
0.28529 + 4.77597I 8.22483 4.15931I
u = 0.291663 0.753926I
a = 0.866867 + 0.853127I
b = 0.390361 0.902380I
0.28529 4.77597I 8.22483 + 4.15931I
u = 1.27478
a = 1.49648
b = 1.90768
11.1241 11.2460
u = 0.233182 + 0.559961I
a = 1.39335 0.25566I
b = 0.181746 0.839836I
4.84522 + 1.19732I 2.35469 1.53706I
u = 0.233182 0.559961I
a = 1.39335 + 0.25566I
b = 0.181746 + 0.839836I
4.84522 1.19732I 2.35469 + 1.53706I
u = 1.54182
a = 0.881123
b = 1.35854
4.17989 9.50990
u = 1.86956
a = 0.573604
b = 1.07239
7.27021 22.4660
10
III.
I
u
3
= h39a
9
u16a
8
u+· · ·+108a+311, a
9
u+8a
8
u+· · ·58a+53, u
2
+u1i
(i) Arc colorings
a
1
=
0
u
a
4
=
1
0
a
3
=
1
u 1
a
8
=
a
7.80000a
9
u + 3.20000a
8
u + ··· 21.6000a 62.2000
a
2
=
5.40000a
9
u + 5.60000a
8
u + ··· + 18.2000a + 40.4000
a
2
u + a
2
+ 2u
a
9
=
14a
9
u + 3a
8
u + ··· + 24a + 48
12.8000a
9
u + 2.20000a
8
u + ··· + 13.4000a + 22.8000
a
7
=
7.80000a
9
u + 3.20000a
8
u + ··· 20.6000a 62.2000
7.80000a
9
u + 3.20000a
8
u + ··· 21.6000a 62.2000
a
6
=
7.80000a
9
u + 3.20000a
8
u + ··· 20.6000a 62.2000
13.4000a
9
u 2.60000a
8
u + ··· 19.2000a 35.4000
a
11
=
a
2
u
8.20000a
9
u + 10.8000a
8
u + ··· 5.40000a 28.8000
a
10
=
8.20000a
9
u + 10.8000a
8
u + ··· 5.40000a 28.8000
8.20000a
9
u + 10.8000a
8
u + ··· 5.40000a 28.8000
a
5
=
3.20000a
9
u + 4.80000a
8
u + ··· 13.4000a 30.8000
1.60000a
9
u + 2.40000a
8
u + ··· 7.20000a 14.4000
a
5
=
3.20000a
9
u + 4.80000a
8
u + ··· 13.4000a 30.8000
1.60000a
9
u + 2.40000a
8
u + ··· 7.20000a 14.4000
(ii) Obstruction class = 1
(iii) Cusp Shapes =
92
5
a
9
u +
172
5
a
8
u + ···
376
5
a
1102
5
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
20
u
19
+ ··· 42u 1
c
3
(u
2
+ u 1)
10
c
4
, c
5
, c
9
(u
5
+ u
4
2u
3
u
2
+ u 1)
4
c
7
, c
11
u
20
+ u
19
+ ··· + 40u 29
c
10
(u
5
3u
4
+ 4u
3
u
2
u + 1)
4
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
20
+ 7y
19
+ ··· 1772y + 1
c
3
(y
2
3y + 1)
10
c
4
, c
5
, c
9
(y
5
5y
4
+ 8y
3
3y
2
y 1)
4
c
7
, c
11
y
20
13y
19
+ ··· 12736y + 841
c
10
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
4
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.677607 + 0.002824I
b = 0.129907 + 1.332380I
3.61874 1.53058I 10.51511 + 4.43065I
u = 0.618034
a = 0.677607 0.002824I
b = 0.129907 1.332380I
3.61874 + 1.53058I 10.51511 4.43065I
u = 0.618034
a = 1.147360 + 0.672981I
b = 0.02823 1.52596I
1.92472 4.40083I 14.7443 + 3.4986I
u = 0.618034
a = 1.147360 0.672981I
b = 0.02823 + 1.52596I
1.92472 + 4.40083I 14.7443 3.4986I
u = 0.618034
a = 1.00379 + 1.46626I
b = 0.620375 + 0.906196I
1.54676 11.48114 + 0.I
u = 0.618034
a = 1.00379 1.46626I
b = 0.620375 0.906196I
1.54676 11.48114 + 0.I
u = 0.618034
a = 0.21019 + 2.15583I
b = 0.418784 + 0.001745I
3.61874 + 1.53058I 10.51511 4.43065I
u = 0.618034
a = 0.21019 2.15583I
b = 0.418784 0.001745I
3.61874 1.53058I 10.51511 + 4.43065I
u = 0.618034
a = 0.04567 + 2.46906I
b = 0.709108 0.415925I
1.92472 4.40083I 14.7443 + 3.4986I
u = 0.618034
a = 0.04567 2.46906I
b = 0.709108 + 0.415925I
1.92472 + 4.40083I 14.7443 3.4986I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.61803
a = 0.972088 + 0.050869I
b = 1.36329 + 0.42595I
4.27694 + 1.53058I 10.51511 4.43065I
u = 1.61803
a = 0.972088 0.050869I
b = 1.36329 0.42595I
4.27694 1.53058I 10.51511 + 4.43065I
u = 1.61803
a = 0.950790 + 0.411274I
b = 1.82005 + 0.07628I
9.82040 4.40083I 14.7443 + 3.4986I
u = 1.61803
a = 0.950790 0.411274I
b = 1.82005 0.07628I
9.82040 + 4.40083I 14.7443 3.4986I
u = 1.61803
a = 0.842560 + 0.263250I
b = 1.57287 + 0.08231I
4.27694 + 1.53058I 10.51511 4.43065I
u = 1.61803
a = 0.842560 0.263250I
b = 1.57287 0.08231I
4.27694 1.53058I 10.51511 + 4.43065I
u = 1.61803
a = 1.124850 + 0.047143I
b = 1.53841 + 0.66546I
9.82040 4.40083I 14.7443 + 3.4986I
u = 1.61803
a = 1.124850 0.047143I
b = 1.53841 0.66546I
9.82040 + 4.40083I 14.7443 3.4986I
u = 1.61803
a = 0.790561
b = 0.805229
6.34892 11.4810
u = 1.61803
a = 0.497659
b = 1.27915
6.34892 11.4810
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
9
+ 3u
7
+ ··· u 1)(u
16
+ 3u
14
+ ··· 3u 1)
· (u
20
u
19
+ ··· 42u 1)
c
2
, c
6
(u
9
+ 3u
7
+ ··· u + 1)(u
16
+ 3u
14
+ ··· 3u 1)
· (u
20
u
19
+ ··· 42u 1)
c
3
(u
2
+ u 1)
10
(u
9
+ 3u
8
+ u
7
2u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 1)
· (u
16
12u
15
+ ··· 360u
2
+ 32)
c
4
, c
5
((u
5
+ u
4
2u
3
u
2
+ u 1)
4
)(u
9
5u
7
+ ··· 2u + 1)
· (u
16
5u
15
+ ··· 10u 4)
c
7
, c
11
(u
9
u
8
+ ··· + 3u
2
+ 1)(u
16
+ u
15
+ ··· 4u 1)
· (u
20
+ u
19
+ ··· + 40u 29)
c
9
((u
5
+ u
4
2u
3
u
2
+ u 1)
4
)(u
9
5u
7
+ ··· 2u 1)
· (u
16
5u
15
+ ··· 10u 4)
c
10
(u
5
3u
4
+ 4u
3
u
2
u + 1)
4
· (u
9
u
7
+ 8u
6
4u
5
+ 5u
4
2u
3
+ 3u
2
2u 1)
· (u
16
+ 15u
15
+ ··· + 1722u + 196)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(y
9
+ 6y
8
+ 13y
7
+ 9y
6
8y
5
16y
4
5y
3
+ 5y
2
+ 3y 1)
· (y
16
+ 6y
15
+ ··· 5y + 1)(y
20
+ 7y
19
+ ··· 1772y + 1)
c
3
(y
2
3y + 1)
10
(y
9
7y
8
+ 15y
7
10y
6
+ y
5
+ 2y
4
8y
2
4y 1)
· (y
16
10y
15
+ ··· 23040y + 1024)
c
4
, c
5
, c
9
(y
5
5y
4
+ 8y
3
3y
2
y 1)
4
· (y
9
10y
8
+ 41y
7
86y
6
+ 90y
5
29y
4
19y
3
+ 6y
2
+ 8y 1)
· (y
16
15y
15
+ ··· 140y + 16)
c
7
, c
11
(y
9
3y
8
5y
7
+ 5y
6
+ 16y
5
+ 8y
4
9y
3
13y
2
6y 1)
· (y
16
27y
15
+ ··· 36y + 1)(y
20
13y
19
+ ··· 12736y + 841)
c
10
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
4
· (y
9
2y
8
7y
7
60y
6
64y
5
53y
4
+ 6y
3
+ 9y
2
+ 10y 1)
· (y
16
3y
15
+ ··· 394156y + 38416)
17