11n
181
(K11n
181
)
A knot diagram
1
Linearized knot diagam
6 8 1 10 9 1 4 2 5 4 8
Solving Sequence
5,9
6
2,10
1 4 3 8 7 11
c
5
c
9
c
1
c
4
c
3
c
8
c
7
c
11
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
12
5u
11
+ 18u
10
47u
9
+ 95u
8
157u
7
+ 208u
6
225u
5
+ 194u
4
129u
3
+ 62u
2
+ 2b 19u + 2,
u
12
3u
11
+ 14u
10
31u
9
+ 73u
8
119u
7
+ 178u
6
209u
5
+ 208u
4
165u
3
+ 104u
2
+ 4a 45u + 12,
u
13
5u
12
+ ··· + 30u 4i
I
u
2
= h−a
3
u
3
a
3
u
2
a
3
u + a
2
u
2
+ u
3
a + a
2
u u
3
+ au u
2
+ b + a 2u + 1,
a
3
u
3
+ u
3
a
2
+ a
4
2a
3
u + 6u
3
a + 2a
2
u + 5u
2
a + 4u
3
a
2
+ 15au + 6u
2
+ 10a + 11u + 12,
u
4
+ u
3
+ 3u
2
+ 2u + 1i
I
u
3
= hu
4
+ u
3
+ 2u
2
+ b + 2u, u
2
+ a + 2, u
7
+ 5u
5
+ 7u
3
+ 2u 1i
* 3 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
12
5u
11
+· · ·+2b +2, u
12
3u
11
+· · ·+4a +12, u
13
5u
12
+· · ·+30u 4i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
1
4
u
12
+
3
4
u
11
+ ··· +
45
4
u 3
1
2
u
12
+
5
2
u
11
+ ··· +
19
2
u 1
a
10
=
u
u
a
1
=
1
4
u
12
3
4
u
11
+ ··· +
27
4
u 2
1
2
u
12
5
2
u
11
+ ···
37
2
u + 3
a
4
=
u
2
+ 1
u
2
a
3
=
1
2
u
12
2u
11
+ ···
29
2
u +
7
2
1
2
u
12
5
2
u
11
+ ···
31
2
u + 2
a
8
=
u
12
9
2
u
11
+ ··· 28u +
9
2
1
2
u
12
+
5
2
u
11
+ ··· +
31
2
u 2
a
7
=
1
2
u
12
+ 2u
11
+ ··· +
5
2
u +
1
2
1
2
u
12
5
2
u
11
+ ···
25
2
u + 2
a
11
=
u
3
2u
u
3
+ u
a
11
=
u
3
2u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
u
12
+5u
11
20u
10
+54u
9
121u
8
+212u
7
314u
6
+374u
5
372u
4
+295u
3
186u
2
+88u34
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
13
+ 5u
11
+ ··· + 2u + 1
c
3
u
13
12u
12
+ ··· 16u + 16
c
4
, c
5
, c
9
c
10
u
13
+ 5u
12
+ ··· + 30u + 4
c
7
, c
11
u
13
+ u
12
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
13
+ 10y
12
+ ··· + 30y
2
1
c
3
y
13
6y
12
+ ··· + 4480y 256
c
4
, c
5
, c
9
c
10
y
13
+ 15y
12
+ ··· + 124y 16
c
7
, c
11
y
13
17y
12
+ ··· + 25y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.144857 + 0.988588I
a = 0.636883 0.256528I
b = 0.881451 0.164723I
2.39689 1.47210I 6.76905 + 4.68228I
u = 0.144857 0.988588I
a = 0.636883 + 0.256528I
b = 0.881451 + 0.164723I
2.39689 + 1.47210I 6.76905 4.68228I
u = 0.698010 + 0.761843I
a = 1.308540 0.343629I
b = 1.138990 0.122915I
1.53379 7.84030I 8.79484 + 6.42108I
u = 0.698010 0.761843I
a = 1.308540 + 0.343629I
b = 1.138990 + 0.122915I
1.53379 + 7.84030I 8.79484 6.42108I
u = 0.853563 + 0.271566I
a = 0.142752 1.224120I
b = 0.206699 + 0.270697I
3.02361 + 2.70878I 9.87229 2.50117I
u = 0.853563 0.271566I
a = 0.142752 + 1.224120I
b = 0.206699 0.270697I
3.02361 2.70878I 9.87229 + 2.50117I
u = 0.360660 + 1.314350I
a = 0.518668 + 0.256927I
b = 0.921497 0.693070I
1.92199 1.66881I 4.76442 + 0.86409I
u = 0.360660 1.314350I
a = 0.518668 0.256927I
b = 0.921497 + 0.693070I
1.92199 + 1.66881I 4.76442 0.86409I
u = 0.22163 + 1.63428I
a = 0.950847 0.342173I
b = 3.01495 + 0.10778I
6.50636 11.34500I 6.41522 + 5.59283I
u = 0.22163 1.63428I
a = 0.950847 + 0.342173I
b = 3.01495 0.10778I
6.50636 + 11.34500I 6.41522 5.59283I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.314498
a = 1.13389
b = 0.244454
0.542082 18.2830
u = 0.06403 + 1.71455I
a = 0.623663 + 0.320565I
b = 2.34998 0.02921I
12.09750 2.52656I 9.24277 + 2.75851I
u = 0.06403 1.71455I
a = 0.623663 0.320565I
b = 2.34998 + 0.02921I
12.09750 + 2.52656I 9.24277 2.75851I
6
II. I
u
2
=
h−a
3
u
3
+u
3
a+· · ·+a+1, a
3
u
3
+u
3
a
2
+· · ·+10a+12, u
4
+u
3
+3u
2
+2u+1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
a
a
3
u
3
+ a
3
u
2
+ a
3
u a
2
u
2
u
3
a a
2
u + u
3
au + u
2
a + 2u 1
a
10
=
u
u
a
1
=
a
3
u
3
+ a
3
u
2
+ a
3
u a
2
u
2
u
3
a a
2
u u
2
a + u
3
au + u
2
+ 2u 1
a
3
u
3
a
3
u
2
+ 2a
2
u
2
+ u
3
a + a
2
u + u
2
a + a
2
2u
2
a + u 1
a
4
=
u
2
+ 1
u
2
a
3
=
a
3
u
2
a
a
3
u
2
+ a
2
u 2u
3
2u
2
+ a 6u 2
a
8
=
a
2
u
a
3
u
2
a
2
u + 2u
3
a + 4u
a
7
=
a
3
u
3
2a
3
u
2
u
3
a
2
a
3
u + u
3
a + u
2
a + 2u
3
+ 2au + 4u + 2
2a
3
u
3
+ u
3
a
2
+ ··· + a
3
2a
a
11
=
u
3
2u
u
3
+ u
a
11
=
u
3
2u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
12u 14
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
16
u
15
+ ··· 22u + 31
c
3
(u
2
+ u 1)
8
c
4
, c
5
, c
9
c
10
(u
4
u
3
+ 3u
2
2u + 1)
4
c
7
, c
11
u
16
+ u
15
+ ··· 48u + 19
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
16
+ 7y
15
+ ··· + 4104y + 961
c
3
(y
2
3y + 1)
8
c
4
, c
5
, c
9
c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
4
c
7
, c
11
y
16
9y
15
+ ··· 4356y + 361
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 1.402280 0.070449I
b = 1.27211 + 1.05139I
4.15885 + 1.41510I 9.82674 4.90874I
u = 0.395123 + 0.506844I
a = 1.42285 + 0.49823I
b = 0.435184 0.843532I
3.73684 + 1.41510I 9.82674 4.90874I
u = 0.395123 + 0.506844I
a = 0.51653 + 1.88406I
b = 0.112797 + 0.286161I
4.15885 + 1.41510I 9.82674 4.90874I
u = 0.395123 + 0.506844I
a = 1.76118 1.19097I
b = 0.964169 + 0.332631I
3.73684 + 1.41510I 9.82674 4.90874I
u = 0.395123 0.506844I
a = 1.402280 + 0.070449I
b = 1.27211 1.05139I
4.15885 1.41510I 9.82674 + 4.90874I
u = 0.395123 0.506844I
a = 1.42285 0.49823I
b = 0.435184 + 0.843532I
3.73684 1.41510I 9.82674 + 4.90874I
u = 0.395123 0.506844I
a = 0.51653 1.88406I
b = 0.112797 0.286161I
4.15885 1.41510I 9.82674 + 4.90874I
u = 0.395123 0.506844I
a = 1.76118 + 1.19097I
b = 0.964169 0.332631I
3.73684 1.41510I 9.82674 + 4.90874I
u = 0.10488 + 1.55249I
a = 0.206815 1.015740I
b = 0.64998 + 1.32275I
2.84290 + 3.16396I 6.17326 2.56480I
u = 0.10488 + 1.55249I
a = 1.051500 0.096749I
b = 3.27820 0.48455I
10.73860 + 3.16396I 6.17326 2.56480I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.10488 + 1.55249I
a = 0.713168 + 0.458702I
b = 1.82216 + 0.28952I
10.73860 + 3.16396I 6.17326 2.56480I
u = 0.10488 + 1.55249I
a = 0.678935 + 0.068135I
b = 3.16197 0.81217I
2.84290 + 3.16396I 6.17326 2.56480I
u = 0.10488 1.55249I
a = 0.206815 + 1.015740I
b = 0.64998 1.32275I
2.84290 3.16396I 6.17326 + 2.56480I
u = 0.10488 1.55249I
a = 1.051500 + 0.096749I
b = 3.27820 + 0.48455I
10.73860 3.16396I 6.17326 + 2.56480I
u = 0.10488 1.55249I
a = 0.713168 0.458702I
b = 1.82216 0.28952I
10.73860 3.16396I 6.17326 + 2.56480I
u = 0.10488 1.55249I
a = 0.678935 0.068135I
b = 3.16197 + 0.81217I
2.84290 3.16396I 6.17326 + 2.56480I
11
III. I
u
3
= hu
4
+ u
3
+ 2u
2
+ b + 2u, u
2
+ a + 2, u
7
+ 5u
5
+ 7u
3
+ 2u 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
u
2
2
u
4
u
3
2u
2
2u
a
10
=
u
u
a
1
=
u
3
u
2
2u 2
u
5
u
4
3u
3
2u
2
2u
a
4
=
u
2
+ 1
u
2
a
3
=
u
6
5u
4
7u
2
u 2
u
4
u
3
3u
2
u 1
a
8
=
u
5
+ 4u
3
+ 4u
u
6
u
5
+ 4u
4
3u
3
+ 4u
2
u + 1
a
7
=
u
6
+ u
5
+ 4u
4
+ 4u
3
+ 4u
2
+ 4u + 1
u
5
+ u
4
3u
3
+ 3u
2
u + 1
a
11
=
u
3
2u
u
3
+ u
a
11
=
u
3
2u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
2u
5
16u
4
6u
3
15u
2
5u 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
7
+ 2u
5
+ u
4
+ u
3
+ u
2
u 1
c
2
, c
6
u
7
+ 2u
5
u
4
+ u
3
u
2
u + 1
c
3
u
7
+ 3u
6
+ 3u
5
+ 4u
4
+ 6u
3
+ u
2
u + 2
c
4
, c
5
u
7
+ 5u
5
+ 7u
3
+ 2u 1
c
7
, c
11
u
7
u
6
u
5
+ u
4
u
3
+ 2u
2
+ 1
c
9
, c
10
u
7
+ 5u
5
+ 7u
3
+ 2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
7
+ 4y
6
+ 6y
5
+ y
4
5y
3
y
2
+ 3y 1
c
3
y
7
3y
6
3y
5
+ 12y
4
+ 10y
3
29y
2
3y 4
c
4
, c
5
, c
9
c
10
y
7
+ 10y
6
+ 39y
5
+ 74y
4
+ 69y
3
+ 28y
2
+ 4y 1
c
7
, c
11
y
7
3y
6
+ y
5
+ 5y
4
y
3
6y
2
4y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.271185 + 0.674379I
a = 1.61875 + 0.36576I
b = 0.943244 0.738208I
4.79738 + 0.94912I 1.21872 0.82233I
u = 0.271185 0.674379I
a = 1.61875 0.36576I
b = 0.943244 + 0.738208I
4.79738 0.94912I 1.21872 + 0.82233I
u = 0.180054 + 1.394520I
a = 0.087725 0.502178I
b = 1.104440 + 0.703496I
0.58425 1.95701I 10.82069 + 1.34837I
u = 0.180054 1.394520I
a = 0.087725 + 0.502178I
b = 1.104440 0.703496I
0.58425 + 1.95701I 10.82069 1.34837I
u = 0.344493
a = 2.11868
b = 0.981303
4.19405 9.98960
u = 0.08112 + 1.66505I
a = 0.765818 + 0.270123I
b = 2.55703 + 0.29924I
13.16470 + 2.34118I 0.965786 0.952471I
u = 0.08112 1.66505I
a = 0.765818 0.270123I
b = 2.55703 0.29924I
13.16470 2.34118I 0.965786 + 0.952471I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
7
+ 2u
5
+ u
4
+ u
3
+ u
2
u 1)(u
13
+ 5u
11
+ ··· + 2u + 1)
· (u
16
u
15
+ ··· 22u + 31)
c
2
, c
6
(u
7
+ 2u
5
u
4
+ u
3
u
2
u + 1)(u
13
+ 5u
11
+ ··· + 2u + 1)
· (u
16
u
15
+ ··· 22u + 31)
c
3
(u
2
+ u 1)
8
(u
7
+ 3u
6
+ 3u
5
+ 4u
4
+ 6u
3
+ u
2
u + 2)
· (u
13
12u
12
+ ··· 16u + 16)
c
4
, c
5
(u
4
u
3
+ 3u
2
2u + 1)
4
(u
7
+ 5u
5
+ 7u
3
+ 2u 1)
· (u
13
+ 5u
12
+ ··· + 30u + 4)
c
7
, c
11
(u
7
u
6
u
5
+ u
4
u
3
+ 2u
2
+ 1)(u
13
+ u
12
+ ··· + 3u + 1)
· (u
16
+ u
15
+ ··· 48u + 19)
c
9
, c
10
(u
4
u
3
+ 3u
2
2u + 1)
4
(u
7
+ 5u
5
+ 7u
3
+ 2u + 1)
· (u
13
+ 5u
12
+ ··· + 30u + 4)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(y
7
+ 4y
6
+ ··· + 3y 1)(y
13
+ 10y
12
+ ··· + 30y
2
1)
· (y
16
+ 7y
15
+ ··· + 4104y + 961)
c
3
(y
2
3y + 1)
8
(y
7
3y
6
3y
5
+ 12y
4
+ 10y
3
29y
2
3y 4)
· (y
13
6y
12
+ ··· + 4480y 256)
c
4
, c
5
, c
9
c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
4
· (y
7
+ 10y
6
+ 39y
5
+ 74y
4
+ 69y
3
+ 28y
2
+ 4y 1)
· (y
13
+ 15y
12
+ ··· + 124y 16)
c
7
, c
11
(y
7
3y
6
+ ··· 4y 1)(y
13
17y
12
+ ··· + 25y 1)
· (y
16
9y
15
+ ··· 4356y + 361)
17