11n
182
(K11n
182
)
A knot diagram
1
Linearized knot diagam
9 7 1 10 11 3 5 3 4 7 8
Solving Sequence
5,7 8,10
11 1 4 3 2 6 9
c
7
c
10
c
11
c
4
c
3
c
2
c
6
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−20148888016u
22
749797203535u
21
+ ··· + 2663810305417b 383665719756,
10534409632231u
22
+ 12986341631640u
21
+ ··· + 2663810305417a 72898377806205,
u
23
u
22
+ ··· + 5u + 1i
I
u
2
= h−4.69374 × 10
59
u
39
+ 1.06924 × 10
60
u
38
+ ··· + 3.76856 × 10
59
b + 1.45903 × 10
61
,
6.35380 × 10
61
u
39
1.40886 × 10
62
u
38
+ ··· + 5.46442 × 10
61
a 2.06339 × 10
63
, u
40
3u
39
+ ··· 25u + 29i
I
u
3
= h−45306u
13
181273u
12
+ ··· + 142097b + 321146,
803669u
13
+ 4740916u
12
+ ··· + 142097a + 1220228,
u
14
+ 6u
13
+ 12u
12
+ 6u
11
3u
10
+ 23u
9
+ 59u
8
+ 22u
7
43u
6
45u
5
7u
4
+ 16u
3
+ 14u
2
+ 5u + 1i
I
u
4
= hb + u + 1, a, u
3
+ u
2
1i
* 4 irreducible components of dim
C
= 0, with total 80 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.01×10
10
u
22
7.50×10
11
u
21
+· · ·+2.66×10
12
b3.84×10
11
, 1.05×
10
13
u
22
+1.30×10
13
u
21
+· · ·+2.66×10
12
a7.29×10
13
, u
23
u
22
+· · ·+5u+1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
10
=
3.95464u
22
4.87510u
21
+ ··· 45.3209u + 27.3662
0.00756394u
22
+ 0.281475u
21
+ ··· + 1.99017u + 0.144029
a
11
=
3.96220u
22
4.59362u
21
+ ··· 43.3307u + 27.5102
0.00756394u
22
+ 0.281475u
21
+ ··· + 1.99017u + 0.144029
a
1
=
4.19771u
22
4.99533u
21
+ ··· 46.1260u + 27.9976
0.296345u
22
+ 0.358714u
21
+ ··· + 2.58565u + 0.310226
a
4
=
22.8331u
22
+ 26.1180u
21
+ ··· + 253.774u 151.915
0.0861032u
22
0.0646937u
21
+ ··· 0.600147u + 0.912866
a
3
=
22.0355u
22
+ 25.3812u
21
+ ··· + 246.765u 147.718
0.0237345u
22
0.319401u
21
+ ··· 2.39210u + 0.616521
a
2
=
22.0593u
22
+ 25.7006u
21
+ ··· + 249.157u 148.334
0.0237345u
22
0.319401u
21
+ ··· 2.39210u + 0.616521
a
6
=
22.6866u
22
+ 26.0341u
21
+ ··· + 251.311u 149.997
0.0604215u
22
0.0191991u
21
+ ··· + 0.136923u + 1.00555
a
9
=
122.419u
22
+ 140.753u
21
+ ··· + 1356.31u 817.081
0.550132u
22
0.666197u
21
+ ··· 5.81233u + 4.35302
a
9
=
122.419u
22
+ 140.753u
21
+ ··· + 1356.31u 817.081
0.550132u
22
0.666197u
21
+ ··· 5.81233u + 4.35302
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
94310497538971
2663810305417
u
22
105799611203026
2663810305417
u
21
+ ···
1045853706856708
2663810305417
u +
633409804939426
2663810305417
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
23
6u
21
+ ··· 40u 4
c
2
, c
6
u
23
3u
22
+ ··· + 47u 8
c
3
, c
7
u
23
u
22
+ ··· + 5u + 1
c
4
, c
9
u
23
9u
22
+ ··· 40u + 16
c
5
, c
8
u
23
6u
22
+ ··· + 22u 5
c
11
u
23
+ 4u
22
+ ··· 7u 34
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
23
12y
22
+ ··· + 448y 16
c
2
, c
6
y
23
13y
22
+ ··· + 1233y 64
c
3
, c
7
y
23
5y
22
+ ··· + 41y 1
c
4
, c
9
y
23
43y
22
+ ··· 1088y 256
c
5
, c
8
y
23
46y
22
+ ··· + 344y 25
c
11
y
23
+ 6y
22
+ ··· 12055y 1156
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.555624 + 0.905584I
a = 0.910105 0.864749I
b = 1.40913 + 1.48491I
1.86354 5.26744I 5.28915 + 6.74191I
u = 0.555624 0.905584I
a = 0.910105 + 0.864749I
b = 1.40913 1.48491I
1.86354 + 5.26744I 5.28915 6.74191I
u = 1.08075
a = 0.674705
b = 2.01594
5.56139 4.10580
u = 0.501300 + 0.715167I
a = 0.703633 0.411741I
b = 1.46848 0.46020I
6.01384 1.36939I 7.91646 + 4.62007I
u = 0.501300 0.715167I
a = 0.703633 + 0.411741I
b = 1.46848 + 0.46020I
6.01384 + 1.36939I 7.91646 4.62007I
u = 0.728418 + 0.872189I
a = 0.297023 + 0.916259I
b = 0.631160 0.422833I
3.37848 + 2.40469I 1.77991 2.36658I
u = 0.728418 0.872189I
a = 0.297023 0.916259I
b = 0.631160 + 0.422833I
3.37848 2.40469I 1.77991 + 2.36658I
u = 1.049550 + 0.569449I
a = 0.978794 + 0.476256I
b = 0.827795 0.239786I
5.59031 + 2.93906I 3.96701 3.47635I
u = 1.049550 0.569449I
a = 0.978794 0.476256I
b = 0.827795 + 0.239786I
5.59031 2.93906I 3.96701 + 3.47635I
u = 0.704512 + 0.984779I
a = 0.736671 + 0.559489I
b = 0.414106 1.231940I
2.32908 + 5.49763I 4.79992 7.26042I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.704512 0.984779I
a = 0.736671 0.559489I
b = 0.414106 + 1.231940I
2.32908 5.49763I 4.79992 + 7.26042I
u = 0.929406 + 0.853194I
a = 0.740478 + 0.793412I
b = 1.091640 + 0.630699I
5.11296 9.53315I 2.57549 + 7.49079I
u = 0.929406 0.853194I
a = 0.740478 0.793412I
b = 1.091640 0.630699I
5.11296 + 9.53315I 2.57549 7.49079I
u = 0.734602
a = 1.84769
b = 0.838790
3.46093 0.434270
u = 1.000300 + 0.806208I
a = 0.146523 0.473900I
b = 0.602615 0.205653I
0.46558 + 3.81570I 4.70967 3.05268I
u = 1.000300 0.806208I
a = 0.146523 + 0.473900I
b = 0.602615 + 0.205653I
0.46558 3.81570I 4.70967 + 3.05268I
u = 0.188306 + 0.473727I
a = 1.261830 + 0.253849I
b = 0.271244 + 0.415630I
0.294559 + 1.131280I 2.80927 6.63257I
u = 0.188306 0.473727I
a = 1.261830 0.253849I
b = 0.271244 0.415630I
0.294559 1.131280I 2.80927 + 6.63257I
u = 1.33922 + 0.68743I
a = 0.831149 0.099202I
b = 1.41488 + 0.83581I
3.36043 + 7.89416I 1.16388 6.61187I
u = 1.33922 0.68743I
a = 0.831149 + 0.099202I
b = 1.41488 0.83581I
3.36043 7.89416I 1.16388 + 6.61187I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.23451 + 0.89988I
a = 0.999661 + 0.218042I
b = 1.34140 1.32358I
0.6169 16.3897I 0.60357 + 8.49133I
u = 1.23451 0.89988I
a = 0.999661 0.218042I
b = 1.34140 + 1.32358I
0.6169 + 16.3897I 0.60357 8.49133I
u = 0.150085
a = 36.9885
b = 0.216243
0.0107219 320.580
7
II. I
u
2
= h−4.69 × 10
59
u
39
+ 1.07 × 10
60
u
38
+ · · · + 3.77 × 10
59
b + 1.46 ×
10
61
, 6.35 × 10
61
u
39
1.41 × 10
62
u
38
+ · · · + 5.46 × 10
61
a 2.06 ×
10
63
, u
40
3u
39
+ · · · 25u + 29i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
10
=
1.16276u
39
+ 2.57824u
38
+ ··· + 15.4232u + 37.7606
1.24550u
39
2.83726u
38
+ ··· 21.4581u 38.7159
a
11
=
0.0827388u
39
0.259017u
38
+ ··· 6.03488u 0.955344
1.24550u
39
2.83726u
38
+ ··· 21.4581u 38.7159
a
1
=
1.18195u
39
+ 2.57423u
38
+ ··· + 12.7538u + 38.0738
0.434159u
39
1.02128u
38
+ ··· 8.80280u 10.8518
a
4
=
0.296393u
39
0.547600u
38
+ ··· + 8.50789u 11.9654
0.237025u
39
0.603121u
38
+ ··· 13.2225u 4.41074
a
3
=
1.03486u
39
+ 2.43611u
38
+ ··· + 28.2109u + 46.3778
0.440164u
39
0.996927u
38
+ ··· 8.56472u 15.8344
a
2
=
1.47503u
39
+ 3.43303u
38
+ ··· + 36.7756u + 62.2122
0.440164u
39
0.996927u
38
+ ··· 8.56472u 15.8344
a
6
=
0.246893u
39
0.444760u
38
+ ··· + 0.0495641u 2.02219
0.286524u
39
+ 0.705961u
38
+ ··· + 6.76415u + 14.3540
a
9
=
1.94454u
39
4.32792u
38
+ ··· 27.3144u 65.7640
0.600066u
39
+ 1.33935u
38
+ ··· + 6.52606u + 22.9357
a
9
=
1.94454u
39
4.32792u
38
+ ··· 27.3144u 65.7640
0.600066u
39
+ 1.33935u
38
+ ··· + 6.52606u + 22.9357
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.41432u
39
4.79564u
38
+ ··· + 14.4984u 64.7958
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
40
+ 9u
38
+ ··· + 244u 44
c
2
, c
6
(u
20
+ 2u
19
+ ··· + 8u + 1)
2
c
3
, c
7
u
40
3u
39
+ ··· 25u + 29
c
4
, c
9
(u
20
+ u
19
+ ··· 25u 11)
2
c
5
, c
8
u
40
+ u
39
+ ··· 47u 169
c
11
(u
20
u
19
+ ··· + 7u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
40
+ 18y
39
+ ··· 94208y + 1936
c
2
, c
6
(y
20
14y
19
+ ··· + 40y + 1)
2
c
3
, c
7
y
40
19y
39
+ ··· 12747y + 841
c
4
, c
9
(y
20
13y
19
+ ··· 1021y + 121)
2
c
5
, c
8
y
40
+ 7y
39
+ ··· 530503y + 28561
c
11
(y
20
+ 3y
19
+ ··· 35y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.843881 + 0.602804I
a = 0.232508 + 0.949215I
b = 1.042200 + 0.656943I
5.13837 3.10653I 2.77090 + 3.27458I
u = 0.843881 0.602804I
a = 0.232508 0.949215I
b = 1.042200 0.656943I
5.13837 + 3.10653I 2.77090 3.27458I
u = 0.724639 + 0.605856I
a = 0.421379 0.634087I
b = 0.15696 + 1.84987I
0.78911 + 3.05252I 1.27188 4.35560I
u = 0.724639 0.605856I
a = 0.421379 + 0.634087I
b = 0.15696 1.84987I
0.78911 3.05252I 1.27188 + 4.35560I
u = 0.893885 + 0.284008I
a = 1.55376 + 0.35417I
b = 0.232385 + 1.342720I
1.76779 + 6.66107I 3.08867 6.78923I
u = 0.893885 0.284008I
a = 1.55376 0.35417I
b = 0.232385 1.342720I
1.76779 6.66107I 3.08867 + 6.78923I
u = 0.424536 + 0.808576I
a = 0.90087 1.19479I
b = 0.545954 + 0.038305I
0.703344 + 0.559674I 1.56320 4.51761I
u = 0.424536 0.808576I
a = 0.90087 + 1.19479I
b = 0.545954 0.038305I
0.703344 0.559674I 1.56320 + 4.51761I
u = 1.048820 + 0.339914I
a = 0.806845 + 0.261493I
b = 0.420413 1.165930I
4.78547 5.34389 + 0.I
u = 1.048820 0.339914I
a = 0.806845 0.261493I
b = 0.420413 + 1.165930I
4.78547 5.34389 + 0.I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.773777 + 0.786429I
a = 0.789062 0.060278I
b = 0.747156 + 0.918386I
0.28152 + 2.20542I 2.09891 2.63579I
u = 0.773777 0.786429I
a = 0.789062 + 0.060278I
b = 0.747156 0.918386I
0.28152 2.20542I 2.09891 + 2.63579I
u = 0.778748 + 0.245271I
a = 1.255710 + 0.087033I
b = 0.33399 1.89842I
7.62987 1.01721I 5.24970 + 11.81252I
u = 0.778748 0.245271I
a = 1.255710 0.087033I
b = 0.33399 + 1.89842I
7.62987 + 1.01721I 5.24970 11.81252I
u = 0.795151
a = 1.84930
b = 2.27654
2.04716 7.60150
u = 0.733508 + 0.115684I
a = 2.02000 + 0.04989I
b = 1.102660 0.124486I
6.94055 4.65557I 9.06224 2.69200I
u = 0.733508 0.115684I
a = 2.02000 0.04989I
b = 1.102660 + 0.124486I
6.94055 + 4.65557I 9.06224 + 2.69200I
u = 1.009230 + 0.784248I
a = 0.998258 + 0.225230I
b = 1.23888 1.42271I
2.54638 8.54122I 0. + 7.30579I
u = 1.009230 0.784248I
a = 0.998258 0.225230I
b = 1.23888 + 1.42271I
2.54638 + 8.54122I 0. 7.30579I
u = 0.937408 + 0.876311I
a = 0.714914 0.335707I
b = 1.346930 + 0.090646I
5.13837 + 3.10653I 2.77090 3.27458I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.937408 0.876311I
a = 0.714914 + 0.335707I
b = 1.346930 0.090646I
5.13837 3.10653I 2.77090 + 3.27458I
u = 0.804574 + 1.002740I
a = 0.211768 0.517712I
b = 0.292544 0.313955I
0.78911 3.05252I 0. + 4.35560I
u = 0.804574 1.002740I
a = 0.211768 + 0.517712I
b = 0.292544 + 0.313955I
0.78911 + 3.05252I 0. 4.35560I
u = 1.28977
a = 1.14010
b = 0.165534
2.04716 7.60150
u = 0.139241 + 0.695732I
a = 0.611135 1.068020I
b = 0.574331 0.269819I
0.28152 2.20542I 2.09891 + 2.63579I
u = 0.139241 0.695732I
a = 0.611135 + 1.068020I
b = 0.574331 + 0.269819I
0.28152 + 2.20542I 2.09891 2.63579I
u = 0.603347 + 0.367132I
a = 1.61538 + 1.06505I
b = 0.082291 + 0.853240I
0.703344 + 0.559674I 1.56320 4.51761I
u = 0.603347 0.367132I
a = 1.61538 1.06505I
b = 0.082291 0.853240I
0.703344 0.559674I 1.56320 + 4.51761I
u = 0.570217 + 0.118702I
a = 1.71022 0.71186I
b = 1.03717 + 2.48340I
0.39627 4.88151I 5.90664 + 1.87878I
u = 0.570217 0.118702I
a = 1.71022 + 0.71186I
b = 1.03717 2.48340I
0.39627 + 4.88151I 5.90664 1.87878I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.23114 + 0.76536I
a = 1.030760 0.025210I
b = 1.28074 + 0.75129I
1.76779 6.66107I 0
u = 1.23114 0.76536I
a = 1.030760 + 0.025210I
b = 1.28074 0.75129I
1.76779 + 6.66107I 0
u = 0.65753 + 1.37826I
a = 0.005515 + 0.856499I
b = 0.615352 0.430269I
2.54638 + 8.54122I 0
u = 0.65753 1.37826I
a = 0.005515 0.856499I
b = 0.615352 + 0.430269I
2.54638 8.54122I 0
u = 1.29816 + 1.03823I
a = 0.574100 0.302843I
b = 1.04929 + 0.95851I
0.39627 4.88151I 0
u = 1.29816 1.03823I
a = 0.574100 + 0.302843I
b = 1.04929 0.95851I
0.39627 + 4.88151I 0
u = 1.31598 + 1.12343I
a = 0.727776 + 0.471526I
b = 0.461214 1.201270I
6.94055 + 4.65557I 0
u = 1.31598 1.12343I
a = 0.727776 0.471526I
b = 0.461214 + 1.201270I
6.94055 4.65557I 0
u = 2.19127 + 0.09123I
a = 0.450657 + 0.128384I
b = 0.617875 0.033077I
7.62987 1.01721I 0
u = 2.19127 0.09123I
a = 0.450657 0.128384I
b = 0.617875 + 0.033077I
7.62987 + 1.01721I 0
14
III.
I
u
3
= h−4.53 × 10
4
u
13
1.81 × 10
5
u
12
+ · · · + 1.42 × 10
5
b + 3.21 × 10
5
, 8.04 ×
10
5
u
13
+4.74×10
6
u
12
+· · · +1.42×10
5
a+1.22×10
6
, u
14
+6u
13
+· · · +5u +1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
10
=
5.65578u
13
33.3639u
12
+ ··· 56.1552u 8.58729
0.318839u
13
+ 1.27570u
12
+ ··· 4.67346u 2.26005
a
11
=
5.33694u
13
32.0882u
12
+ ··· 60.8286u 10.8473
0.318839u
13
+ 1.27570u
12
+ ··· 4.67346u 2.26005
a
1
=
4.51223u
13
27.0057u
12
+ ··· 50.4852u 8.52068
0.190356u
13
+ 0.431761u
12
+ ··· 6.16986u 2.39439
a
4
=
5.25817u
13
25.6393u
12
+ ··· + 29.6480u + 19.5162
1.06661u
13
+ 5.25611u
12
+ ··· 0.837358u 0.336939
a
3
=
5.69548u
13
27.1106u
12
+ ··· + 33.8647u + 23.0100
1.82155u
13
10.4029u
12
+ ··· 13.0398u 1.99691
a
2
=
3.87393u
13
16.7077u
12
+ ··· + 46.9046u + 25.0069
1.82155u
13
10.4029u
12
+ ··· 13.0398u 1.99691
a
6
=
3.82170u
13
18.0285u
12
+ ··· + 29.6178u + 20.3626
0.369860u
13
+ 2.35460u
12
+ ··· + 2.80717u + 1.18340
a
9
=
34.2887u
13
201.354u
12
+ ··· 347.739u 55.6924
1.64859u
13
10.2510u
12
+ ··· 23.4938u 6.08505
a
9
=
34.2887u
13
201.354u
12
+ ··· 347.739u 55.6924
1.64859u
13
10.2510u
12
+ ··· 23.4938u 6.08505
(ii) Obstruction class = 1
(iii) Cusp Shapes =
851937
142097
u
13
3765455
142097
u
12
+ ··· +
763404
142097
u
615113
142097
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
14
+ 3u
13
+ ··· + 8u + 4
c
2
(u
7
2u
6
+ 2u
5
3u
4
+ 3u
2
u + 1)
2
c
3
, c
7
u
14
+ 6u
13
+ ··· + 5u + 1
c
4
, c
9
u
14
3u
12
17u
10
+ 114u
8
277u
6
+ 352u
4
236u
2
+ 67
c
5
, c
8
u
14
+ 9u
12
+ ··· 3u + 1
c
6
(u
7
+ 2u
6
+ 2u
5
+ 3u
4
3u
2
u 1)
2
c
11
(u
7
2u
6
+ 3u
5
3u
4
5u
3
+ 2u
2
+ 5u + 3)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
14
+ 15y
13
+ ··· + 96y + 16
c
2
, c
6
(y
7
8y
5
+ y
4
+ 18y
3
3y
2
5y 1)
2
c
3
, c
7
y
14
12y
13
+ ··· + 3y + 1
c
4
, c
9
(y
7
3y
6
17y
5
+ 114y
4
277y
3
+ 352y
2
236y + 67)
2
c
5
, c
8
y
14
+ 18y
13
+ ··· + 11y + 1
c
11
(y
7
+ 2y
6
13y
5
21y
4
+ 79y
3
36y
2
+ 13y 9)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.841811 + 0.182190I
a = 1.69734 + 0.14987I
b = 1.095480 0.201335I
7.19586 + 4.79737I 15.3799 10.7291I
u = 0.841811 0.182190I
a = 1.69734 0.14987I
b = 1.095480 + 0.201335I
7.19586 4.79737I 15.3799 + 10.7291I
u = 0.807415 + 0.203980I
a = 1.293990 + 0.103857I
b = 0.54475 1.78373I
7.86115 0.79658I 13.7450 5.5444I
u = 0.807415 0.203980I
a = 1.293990 0.103857I
b = 0.54475 + 1.78373I
7.86115 + 0.79658I 13.7450 + 5.5444I
u = 0.328860 + 0.493680I
a = 1.54515 1.23007I
b = 0.15112 + 2.21331I
0.20871 + 5.48705I 1.09915 7.96619I
u = 0.328860 0.493680I
a = 1.54515 + 1.23007I
b = 0.15112 2.21331I
0.20871 5.48705I 1.09915 + 7.96619I
u = 1.04271 + 1.08370I
a = 0.685924 + 0.369272I
b = 1.05349 1.00763I
0.20871 5.48705I 1.09915 + 7.96619I
u = 1.04271 1.08370I
a = 0.685924 0.369272I
b = 1.05349 + 1.00763I
0.20871 + 5.48705I 1.09915 7.96619I
u = 0.198097 + 0.363970I
a = 5.02166 2.73312I
b = 0.121264 0.413302I
0.0877733 6.94848 + 0.I
u = 0.198097 0.363970I
a = 5.02166 + 2.73312I
b = 0.121264 + 0.413302I
0.0877733 6.94848 + 0.I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.36446 + 1.14498I
a = 0.692299 0.446761I
b = 0.459655 + 1.110540I
7.19586 + 4.79737I 15.3799 10.7291I
u = 1.36446 1.14498I
a = 0.692299 + 0.446761I
b = 0.459655 1.110540I
7.19586 4.79737I 15.3799 + 10.7291I
u = 2.11690 + 0.04289I
a = 0.501625 0.095237I
b = 0.507720 + 0.269988I
7.86115 0.79658I 13.7450 5.5444I
u = 2.11690 0.04289I
a = 0.501625 + 0.095237I
b = 0.507720 0.269988I
7.86115 + 0.79658I 13.7450 + 5.5444I
19
IV. I
u
4
= hb + u + 1, a, u
3
+ u
2
1i
(i) Arc colorings
a
5
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
10
=
0
u 1
a
11
=
u 1
u 1
a
1
=
1
u
2
u
a
4
=
0
u
a
3
=
u
u + 1
a
2
=
1
u + 1
a
6
=
u
2
+ u + 1
u
2
+ 2u + 1
a
9
=
0
u 1
a
9
=
0
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
2
+ 7u
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
10
u
3
2u
2
+ u 1
c
2
u
3
+ 2u
2
+ u + 1
c
3
, c
7
, c
11
u
3
+ u
2
1
c
4
, c
9
u
3
c
5
, c
8
u
3
u 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
10
y
3
2y
2
3y 1
c
3
, c
7
, c
11
y
3
y
2
+ 2y 1
c
4
, c
9
y
3
c
5
, c
8
y
3
2y
2
+ y 1
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0
b = 0.122561 0.744862I
1.45094 + 3.77083I 4.63651 3.93596I
u = 0.877439 0.744862I
a = 0
b = 0.122561 + 0.744862I
1.45094 3.77083I 4.63651 + 3.93596I
u = 0.754878
a = 0
b = 1.75488
6.19175 9.27300
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
3
2u
2
+ u 1)(u
14
+ 3u
13
+ ··· + 8u + 4)(u
23
6u
21
+ ··· 40u 4)
· (u
40
+ 9u
38
+ ··· + 244u 44)
c
2
(u
3
+ 2u
2
+ u + 1)(u
7
2u
6
+ 2u
5
3u
4
+ 3u
2
u + 1)
2
· ((u
20
+ 2u
19
+ ··· + 8u + 1)
2
)(u
23
3u
22
+ ··· + 47u 8)
c
3
, c
7
(u
3
+ u
2
1)(u
14
+ 6u
13
+ ··· + 5u + 1)(u
23
u
22
+ ··· + 5u + 1)
· (u
40
3u
39
+ ··· 25u + 29)
c
4
, c
9
u
3
(u
14
3u
12
17u
10
+ 114u
8
277u
6
+ 352u
4
236u
2
+ 67)
· ((u
20
+ u
19
+ ··· 25u 11)
2
)(u
23
9u
22
+ ··· 40u + 16)
c
5
, c
8
(u
3
u 1)(u
14
+ 9u
12
+ ··· 3u + 1)(u
23
6u
22
+ ··· + 22u 5)
· (u
40
+ u
39
+ ··· 47u 169)
c
6
(u
3
2u
2
+ u 1)(u
7
+ 2u
6
+ 2u
5
+ 3u
4
3u
2
u 1)
2
· ((u
20
+ 2u
19
+ ··· + 8u + 1)
2
)(u
23
3u
22
+ ··· + 47u 8)
c
11
(u
3
+ u
2
1)(u
7
2u
6
+ 3u
5
3u
4
5u
3
+ 2u
2
+ 5u + 3)
2
· ((u
20
u
19
+ ··· + 7u + 1)
2
)(u
23
+ 4u
22
+ ··· 7u 34)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
3
2y
2
3y 1)(y
14
+ 15y
13
+ ··· + 96y + 16)
· (y
23
12y
22
+ ··· + 448y 16)(y
40
+ 18y
39
+ ··· 94208y + 1936)
c
2
, c
6
(y
3
2y
2
3y 1)(y
7
8y
5
+ y
4
+ 18y
3
3y
2
5y 1)
2
· ((y
20
14y
19
+ ··· + 40y + 1)
2
)(y
23
13y
22
+ ··· + 1233y 64)
c
3
, c
7
(y
3
y
2
+ 2y 1)(y
14
12y
13
+ ··· + 3y + 1)
· (y
23
5y
22
+ ··· + 41y 1)(y
40
19y
39
+ ··· 12747y + 841)
c
4
, c
9
y
3
(y
7
3y
6
17y
5
+ 114y
4
277y
3
+ 352y
2
236y + 67)
2
· (y
20
13y
19
+ ··· 1021y + 121)
2
· (y
23
43y
22
+ ··· 1088y 256)
c
5
, c
8
(y
3
2y
2
+ y 1)(y
14
+ 18y
13
+ ··· + 11y + 1)
· (y
23
46y
22
+ ··· + 344y 25)(y
40
+ 7y
39
+ ··· 530503y + 28561)
c
11
(y
3
y
2
+ 2y 1)(y
7
+ 2y
6
+ ··· + 13y 9)
2
· ((y
20
+ 3y
19
+ ··· 35y + 1)
2
)(y
23
+ 6y
22
+ ··· 12055y 1156)
25