11n
185
(K11n
185
)
A knot diagram
1
Linearized knot diagam
6 5 1 10 8 4 3 2 4 5 7
Solving Sequence
5,10 7,11
1 4 3 8 2 6 9
c
10
c
11
c
4
c
3
c
7
c
2
c
6
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−25u
13
100u
12
+ ··· + 32b 4, u
13
+ 44u
12
+ ··· + 64a + 284,
u
14
+ 6u
13
+ 14u
12
+ 8u
11
35u
10
98u
9
105u
8
+ 154u
6
+ 224u
5
+ 168u
4
+ 74u
3
+ 26u
2
+ 16u + 8i
I
u
2
= hau + b, u
5
a + 2u
4
a + 3u
5
+ 2u
3
a + 9u
4
u
2
a + 8u
3
+ 4a
2
au u
2
10u 7,
u
6
+ 4u
5
+ 6u
4
+ 3u
3
3u
2
6u 4i
I
u
3
= h−10a
3
u
2
36a
2
u
2
+ ··· 289a 111,
a
3
u
2
+ a
4
2a
3
u + 3a
2
u
2
+ a
3
2a
2
u + u
2
a + 3a
2
5au + 6u
2
+ 4a 6u + 1, u
3
u
2
+ 1i
I
u
4
= h−2452292589a
7
u
2
+ 1959398184a
6
u
2
+ ··· 9164004134a 16046840503,
a
7
u
2
+ 10a
6
u
2
+ ··· + 116a + 33, u
3
u
2
+ 1i
I
u
5
= h6u
17
+ 4u
16
+ ··· + 2b + 46, 23u
17
+ 12u
16
+ ··· + 4a + 112,
u
18
8u
16
+ 29u
14
68u
12
+ 115u
10
141u
8
+ 126u
6
79u
4
+ 28u
2
4i
I
u
6
= h−u
2
+ b u + 1, u
2
+ a + 1, u
3
+ u
2
1i
I
u
7
= h−au u
2
+ b + u 1, u
2
a + a
2
+ 2au + u
2
a + 1, u
3
u
2
+ 1i
I
v
1
= ha, b + 1, v + 1i
* 8 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−25u
13
100u
12
+ · · · + 32b 4, u
13
+ 44u
12
+ · · · + 64a +
284, u
14
+ 6u
13
+ · · · + 16u + 8i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
7
=
0.0156250u
13
0.687500u
12
+ ··· 3.40625u 4.43750
25
32
u
13
+
25
8
u
12
+ ··· +
75
16
u +
1
8
a
11
=
1
u
2
a
1
=
0.265625u
13
+ 1.56250u
12
+ ··· + 2.59375u + 3.06250
1
32
u
13
+
5
8
u
12
+ ··· +
35
16
u +
17
8
a
4
=
u
u
a
3
=
0.765625u
13
+ 3.81250u
12
+ ··· + 8.09375u + 4.56250
1.34375u
13
+ 6.37500u
12
+ ··· + 11.0625u + 6.37500
a
8
=
0.234375u
13
0.937500u
12
+ ··· 0.406250u 0.937500
1
32
u
13
+
5
8
u
12
+ ··· +
35
16
u +
17
8
a
2
=
0.765625u
13
+ 3.81250u
12
+ ··· + 8.09375u + 4.56250
25
32
u
13
+
25
8
u
12
+ ··· +
75
16
u +
1
8
a
6
=
0.578125u
13
+ 2.56250u
12
+ ··· + 2.96875u + 1.81250
1.34375u
13
+ 6.37500u
12
+ ··· + 11.0625u + 6.37500
a
9
=
u
2
+ 1
u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
8
u
13
13
2
u
12
49
4
u
11
1
2
u
10
+
361
8
u
9
+
183
2
u
8
+
491
8
u
7
247
4
u
6
673
4
u
5
307
2
u
4
60u
3
23
4
u
2
33
4
u
31
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
14
u
13
+ ··· + 2u
2
+ 2
c
2
, c
6
, c
8
c
11
u
14
u
13
+ ··· u + 1
c
3
, c
5
u
14
7u
13
+ ··· 25u + 11
c
4
, c
9
, c
10
u
14
6u
13
+ ··· 16u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
14
+ 3y
13
+ ··· + 8y + 4
c
2
, c
6
, c
8
c
11
y
14
+ 11y
13
+ ··· + 21y + 1
c
3
, c
5
y
14
7y
13
+ ··· 493y + 121
c
4
, c
9
, c
10
y
14
8y
13
+ ··· + 160y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.667935 + 1.025090I
a = 0.285457 0.894080I
b = 1.107180 0.304570I
4.32333 + 2.75562I 3.35979 3.59185I
u = 0.667935 1.025090I
a = 0.285457 + 0.894080I
b = 1.107180 + 0.304570I
4.32333 2.75562I 3.35979 + 3.59185I
u = 0.536682 + 1.118280I
a = 0.636097 + 0.907281I
b = 1.355980 0.224415I
3.36641 10.30200I 6.23771 + 5.94221I
u = 0.536682 1.118280I
a = 0.636097 0.907281I
b = 1.355980 + 0.224415I
3.36641 + 10.30200I 6.23771 5.94221I
u = 1.069760 + 0.720252I
a = 0.777184 0.841410I
b = 1.43743 0.34034I
3.01100 + 3.56965I 5.19675 2.89817I
u = 1.069760 0.720252I
a = 0.777184 + 0.841410I
b = 1.43743 + 0.34034I
3.01100 3.56965I 5.19675 + 2.89817I
u = 1.344910 + 0.179800I
a = 0.609809 0.501435I
b = 0.729978 0.784026I
5.73092 + 3.41357I 11.64336 + 0.09610I
u = 1.344910 0.179800I
a = 0.609809 + 0.501435I
b = 0.729978 + 0.784026I
5.73092 3.41357I 11.64336 0.09610I
u = 1.19710 + 0.78285I
a = 0.78383 + 1.31732I
b = 1.96958 + 0.96334I
1.2941 + 17.1000I 8.51485 9.31216I
u = 1.19710 0.78285I
a = 0.78383 1.31732I
b = 1.96958 0.96334I
1.2941 17.1000I 8.51485 + 9.31216I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.252591 + 0.403462I
a = 0.828123 0.088481I
b = 0.173478 + 0.356466I
0.81174 1.19027I 7.67312 + 5.52205I
u = 0.252591 0.403462I
a = 0.828123 + 0.088481I
b = 0.173478 0.356466I
0.81174 + 1.19027I 7.67312 5.52205I
u = 1.56380 + 0.03954I
a = 0.111030 0.272749I
b = 0.184413 + 0.422135I
4.62975 + 6.18029I 7.37442 7.53018I
u = 1.56380 0.03954I
a = 0.111030 + 0.272749I
b = 0.184413 0.422135I
4.62975 6.18029I 7.37442 + 7.53018I
6
II.
I
u
2
= hau + b, u
5
a + 3u
5
+ · · · + 4a
2
7, u
6
+ 4u
5
+ 6u
4
+ 3u
3
3u
2
6u 4i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
7
=
a
au
a
11
=
1
u
2
a
1
=
1
2
u
5
a
1
4
u
5
+ ··· a + 1
u
5
a
1
2
u
5
+ ··· 2a + 1
a
4
=
u
u
a
3
=
1
4
u
5
1
2
u
4
+ ··· + a + 1
3
2
u
5
3u
4
+ ··· +
7
2
u + 3
a
8
=
1
2
u
5
a +
1
4
u
5
+ ··· + a
3
2
u
5
a 2u
4
a + u
5
u
3
a + 3u
4
+ u
2
a + 3u
3
+ 2au + 2a 2u 3
a
2
=
1
4
u
5
1
2
u
4
+ ··· + a + 1
1
2
u
5
u
4
u
3
+ au +
1
2
u
2
+
3
2
u + 1
a
6
=
u
3
a u
2
a + a
u
3
a u
2
a au
a
9
=
u
2
+ 1
u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14u
5
31u
4
31u
3
+ 5u
2
+ 28u + 30
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
6
2u
4
u
3
+ 3u
2
+ u 1)
2
c
2
, c
6
, c
8
c
11
u
12
u
11
+ ··· 7u + 1
c
3
, c
5
u
12
5u
11
+ ··· + 42u 7
c
4
, c
9
, c
10
(u
6
4u
5
+ 6u
4
3u
3
3u
2
+ 6u 4)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
6
4y
5
+ 10y
4
15y
3
+ 15y
2
7y + 1)
2
c
2
, c
6
, c
8
c
11
y
12
+ y
11
+ ··· 59y + 1
c
3
, c
5
y
12
5y
11
+ ··· + 154y + 49
c
4
, c
9
, c
10
(y
6
4y
5
+ 6y
4
5y
3
3y
2
12y + 16)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.977719
a = 0.332086 + 0.227752I
b = 0.324687 0.222678I
0.985708 7.65430
u = 0.977719
a = 0.332086 0.227752I
b = 0.324687 + 0.222678I
0.985708 7.65430
u = 0.429813 + 1.015170I
a = 0.575835 1.071170I
b = 1.334920 + 0.124164I
4.79788 2.68180I 2.86354 + 2.82727I
u = 0.429813 + 1.015170I
a = 0.024967 + 0.780798I
b = 0.803370 + 0.310252I
4.79788 2.68180I 2.86354 + 2.82727I
u = 0.429813 1.015170I
a = 0.575835 + 1.071170I
b = 1.334920 0.124164I
4.79788 + 2.68180I 2.86354 2.82727I
u = 0.429813 1.015170I
a = 0.024967 0.780798I
b = 0.803370 0.310252I
4.79788 + 2.68180I 2.86354 2.82727I
u = 1.23275 + 0.71927I
a = 0.626848 + 0.640690I
b = 1.233580 + 0.338935I
2.32551 + 9.01899I 7.13133 8.44417I
u = 1.23275 + 0.71927I
a = 0.93315 1.29101I
b = 2.07892 0.92030I
2.32551 + 9.01899I 7.13133 8.44417I
u = 1.23275 0.71927I
a = 0.626848 0.640690I
b = 1.233580 0.338935I
2.32551 9.01899I 7.13133 + 8.44417I
u = 1.23275 0.71927I
a = 0.93315 + 1.29101I
b = 2.07892 + 0.92030I
2.32551 9.01899I 7.13133 + 8.44417I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.65260
a = 1.75945
b = 2.90767
9.97120 78.6440
u = 1.65260
a = 0.119054
b = 0.196749
9.97120 78.6440
11
III. I
u
3
=
h−10a
3
u
2
36a
2
u
2
+· · · 289a 111, a
3
u
2
+3a
2
u
2
+· · · + 4a + 1, u
3
u
2
+1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
7
=
a
0.0332226a
3
u
2
+ 0.119601a
2
u
2
+ ··· + 0.960133a + 0.368771
a
11
=
1
u
2
a
1
=
0.249169a
3
u
2
0.897010a
2
u
2
+ ··· 0.700997a 0.265781
0.205980a
3
u
2
0.541528a
2
u
2
+ ··· 0.152824a 0.0863787
a
4
=
u
u
a
3
=
0.189369a
3
u
2
0.481728a
2
u
2
+ ··· 0.172757a 0.401993
0.146179a
3
u
2
0.126246a
2
u
2
+ ··· + 0.375415a 0.222591
a
8
=
0.0431894a
3
u
2
+ 0.355482a
2
u
2
+ ··· + 0.548173a + 0.179402
0.176080a
3
u
2
+ 0.166113a
2
u
2
+ ··· + 0.611296a + 0.345515
a
2
=
0.189369a
3
u
2
0.481728a
2
u
2
+ ··· 0.172757a 0.401993
au
a
6
=
0.0431894a
3
u
2
+ 0.355482a
2
u
2
+ ··· + 0.548173a + 0.179402
0.0764120a
3
u
2
+ 0.475083a
2
u
2
+ ··· + 0.508306a + 0.548173
a
9
=
u
2
+ 1
u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
24
301
a
3
u
2
352
301
a
3
u
568
301
a
2
u
2
+
104
301
a
3
304
301
a
2
u +
512
301
u
2
a +
856
301
a
2
1320
301
au +
80
301
u
2
+
992
301
a +
772
301
u
146
301
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
12
3u
11
+ ··· + 30u + 25
c
2
, c
6
, c
8
c
11
u
12
u
11
+ ··· + 4u + 7
c
3
, c
5
(u
2
+ u + 1)
6
c
4
, c
9
, c
10
(u
3
+ u
2
1)
4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
12
9y
11
+ ··· 100y + 625
c
2
, c
6
, c
8
c
11
y
12
+ 3y
11
+ ··· + 208y + 49
c
3
, c
5
(y
2
+ y + 1)
6
c
4
, c
9
, c
10
(y
3
y
2
+ 2y 1)
4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.163500 0.426968I
b = 1.65706 0.08153I
3.02413 + 1.23164I 2.49024 3.94876I
u = 0.877439 + 0.744862I
a = 0.014457 + 1.385720I
b = 1.70063 + 1.21638I
3.02413 6.88789I 2.49024 + 9.90765I
u = 0.877439 + 0.744862I
a = 1.05173 + 0.98574I
b = 1.33894 0.49201I
3.02413 + 1.23164I 2.49024 3.94876I
u = 0.877439 + 0.744862I
a = 0.44248 1.76191I
b = 1.04486 1.20512I
3.02413 6.88789I 2.49024 + 9.90765I
u = 0.877439 0.744862I
a = 1.163500 + 0.426968I
b = 1.65706 + 0.08153I
3.02413 1.23164I 2.49024 + 3.94876I
u = 0.877439 0.744862I
a = 0.014457 1.385720I
b = 1.70063 1.21638I
3.02413 + 6.88789I 2.49024 9.90765I
u = 0.877439 0.744862I
a = 1.05173 0.98574I
b = 1.33894 + 0.49201I
3.02413 1.23164I 2.49024 + 3.94876I
u = 0.877439 0.744862I
a = 0.44248 + 1.76191I
b = 1.04486 + 1.20512I
3.02413 + 6.88789I 2.49024 9.90765I
u = 0.754878
a = 0.03389 + 1.64154I
b = 1.136780 + 0.774104I
1.11345 4.05977I 9.01951 + 6.92820I
u = 0.754878
a = 0.03389 1.64154I
b = 1.136780 0.774104I
1.11345 + 4.05977I 9.01951 6.92820I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.754878
a = 1.50591 + 1.02547I
b = 0.025581 + 1.239160I
1.11345 4.05977I 9.01951 + 6.92820I
u = 0.754878
a = 1.50591 1.02547I
b = 0.025581 1.239160I
1.11345 + 4.05977I 9.01951 6.92820I
16
IV. I
u
4
= h−2.45 × 10
9
a
7
u
2
+ 1.96 × 10
9
a
6
u
2
+ · · · 9.16 × 10
9
a 1.60 ×
10
10
, a
7
u
2
+ 10a
6
u
2
+ · · · + 116a + 33, u
3
u
2
+ 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
7
=
a
0.405041a
7
u
2
0.323630a
6
u
2
+ ··· + 1.51360a + 2.65043
a
11
=
1
u
2
a
1
=
0.523501a
7
u
2
0.0850496a
6
u
2
+ ··· 0.741341a 0.113356
0.280191a
7
u
2
0.209408a
6
u
2
+ ··· + 2.44721a + 3.96214
a
4
=
u
u
a
3
=
0.0502811a
7
u
2
0.392110a
6
u
2
+ ··· + 1.40914a + 0.793861
0.124389a
7
u
2
0.527176a
6
u
2
+ ··· + 9.80960a + 8.21031
a
8
=
0.232267a
7
u
2
+ 0.0446991a
6
u
2
+ ··· + 0.0658781a 1.11663
0.338024a
7
u
2
+ 0.201586a
6
u
2
+ ··· + 2.61051a 0.410883
a
2
=
0.0502811a
7
u
2
0.392110a
6
u
2
+ ··· + 1.40914a + 0.793861
0.342964a
7
u
2
0.298685a
6
u
2
+ ··· + 10.1678a + 8.72007
a
6
=
0.107236a
7
u
2
0.103911a
6
u
2
+ ··· + 1.36281a + 1.46016
0.512277a
7
u
2
0.427541a
6
u
2
+ ··· + 1.87642a + 4.11059
a
9
=
u
2
+ 1
u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8159408
12909239
a
7
u
2
2809816
1844177
a
6
u
2
+ ··· +
257953072
12909239
a
2299186
12909239
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
12
+ u
11
+ ··· 4u + 1)
2
c
2
, c
6
, c
8
c
11
u
24
+ u
23
+ ··· + 94u + 19
c
3
, c
5
(u
4
+ u
3
2u + 1)
6
c
4
, c
9
, c
10
(u
3
+ u
2
1)
8
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
12
+ 3y
11
+ ··· 8y + 1)
2
c
2
, c
6
, c
8
c
11
y
24
15y
23
+ ··· + 6136y + 361
c
3
, c
5
(y
4
y
3
+ 6y
2
4y + 1)
6
c
4
, c
9
, c
10
(y
3
y
2
+ 2y 1)
8
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.781244 0.526293I
b = 1.57291 0.16189I
0.26574 6.88789I 14.4902 + 9.9077I
u = 0.877439 + 0.744862I
a = 0.931824 + 0.522997I
b = 0.957160 0.116334I
0.265740 + 1.231640I 14.4902 3.9488I
u = 0.877439 + 0.744862I
a = 0.699396 0.461137I
b = 1.207180 + 0.235183I
0.265740 + 1.231640I 14.4902 3.9488I
u = 0.877439 + 0.744862I
a = 0.065722 + 1.213540I
b = 0.418059 + 0.300929I
0.265740 + 1.231640I 14.4902 3.9488I
u = 0.877439 + 0.744862I
a = 1.132860 0.777183I
b = 0.293478 + 1.043710I
0.26574 6.88789I 14.4902 + 9.9077I
u = 0.877439 + 0.744862I
a = 0.222091 + 1.383150I
b = 1.23772 + 1.32475I
0.26574 6.88789I 14.4902 + 9.9077I
u = 0.877439 + 0.744862I
a = 0.446111 + 0.035743I
b = 0.961588 1.015860I
0.265740 + 1.231640I 14.4902 3.9488I
u = 0.877439 + 0.744862I
a = 0.07494 1.57340I
b = 1.22513 1.04820I
0.26574 6.88789I 14.4902 + 9.9077I
u = 0.877439 0.744862I
a = 0.781244 + 0.526293I
b = 1.57291 + 0.16189I
0.26574 + 6.88789I 14.4902 9.9077I
u = 0.877439 0.744862I
a = 0.931824 0.522997I
b = 0.957160 + 0.116334I
0.265740 1.231640I 14.4902 + 3.9488I
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.877439 0.744862I
a = 0.699396 + 0.461137I
b = 1.207180 0.235183I
0.265740 1.231640I 14.4902 + 3.9488I
u = 0.877439 0.744862I
a = 0.065722 1.213540I
b = 0.418059 0.300929I
0.265740 1.231640I 14.4902 + 3.9488I
u = 0.877439 0.744862I
a = 1.132860 + 0.777183I
b = 0.293478 1.043710I
0.26574 + 6.88789I 14.4902 9.9077I
u = 0.877439 0.744862I
a = 0.222091 1.383150I
b = 1.23772 1.32475I
0.26574 + 6.88789I 14.4902 9.9077I
u = 0.877439 0.744862I
a = 0.446111 0.035743I
b = 0.961588 + 1.015860I
0.265740 1.231640I 14.4902 + 3.9488I
u = 0.877439 0.744862I
a = 0.07494 + 1.57340I
b = 1.22513 + 1.04820I
0.26574 + 6.88789I 14.4902 9.9077I
u = 0.754878
a = 0.421556 + 0.043844I
b = 1.135590 + 0.509778I
4.40332 4.05977I 21.0195 + 6.9282I
u = 0.754878
a = 0.421556 0.043844I
b = 1.135590 0.509778I
4.40332 + 4.05977I 21.0195 6.9282I
u = 0.754878
a = 1.50433 + 0.67531I
b = 0.318223 + 0.033097I
4.40332 4.05977I 21.0195 + 6.9282I
u = 0.754878
a = 1.50433 0.67531I
b = 0.318223 0.033097I
4.40332 + 4.05977I 21.0195 6.9282I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.754878
a = 0.28531 + 2.98501I
b = 0.12962 + 3.24360I
4.40332 4.05977I 21.0195 + 6.9282I
u = 0.754878
a = 0.28531 2.98501I
b = 0.12962 3.24360I
4.40332 + 4.05977I 21.0195 6.9282I
u = 0.754878
a = 0.17171 + 4.29685I
b = 0.21537 + 2.25332I
4.40332 4.05977I 21.0195 + 6.9282I
u = 0.754878
a = 0.17171 4.29685I
b = 0.21537 2.25332I
4.40332 + 4.05977I 21.0195 6.9282I
22
V. I
u
5
= h6u
17
+ 4u
16
+ · · · + 2b + 46, 23u
17
+ 12u
16
+ · · · + 4a + 112, u
18
8u
16
+ · · · + 28u
2
4i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
7
=
23
4
u
17
3u
16
+ ··· 57u 28
3u
17
2u
16
+ ··· 28u 23
a
11
=
1
u
2
a
1
=
3
4
u
17
u
16
+ ··· + 3u 14
u
17
+
1
2
u
16
+ ··· 15u + 3
a
4
=
u
u
a
3
=
11
4
u
17
u
16
+ ··· + 29u 5
2u
17
+
3
2
u
16
+ ··· 17u + 19
a
8
=
7
4
u
17
3
2
u
16
+ ··· 18u 17
u
17
1
2
u
16
+ ··· 15u 3
a
2
=
11
4
u
17
u
16
+ ··· + 29u 5
3u
17
+ 2u
16
+ ··· 28u + 23
a
6
=
19
4
u
17
5
2
u
16
+ ··· 46u 24
2u
17
3
2
u
16
+ ··· 17u 19
a
9
=
u
2
+ 1
u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
16
+ 3 u
14
+ 4 u
12
33u
10
+ 92 u
8
152u
6
+ 155u
4
108u
2
+ 24
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
18
+ 2u
16
u
14
u
12
+ 12u
10
+ u
8
20u
6
+ u
4
+ 20u
2
4
c
2
, c
8
u
18
5u
16
+ ··· + 5u + 1
c
3
u
18
+ 10u
17
+ ··· + 4u + 1
c
4
, c
9
, c
10
u
18
8u
16
+ ··· + 28u
2
4
c
5
u
18
10u
17
+ ··· 4u + 1
c
6
, c
11
u
18
5u
16
+ ··· 5u + 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
9
+ 2y
8
y
7
y
6
+ 12y
5
+ y
4
20y
3
+ y
2
+ 20y 4)
2
c
2
, c
6
, c
8
c
11
y
18
10y
17
+ ··· 9y + 1
c
3
, c
5
y
18
10y
17
+ ··· 2y + 1
c
4
, c
9
, c
10
(y
9
8y
8
+ 29y
7
68y
6
+ 115y
5
141y
4
+ 126y
3
79y
2
+ 28y 4)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.876962 + 0.699049I
a = 0.19361 1.61044I
b = 1.29556 1.27695I
0.75125 6.53634I 5.69189 + 6.84556I
u = 0.876962 0.699049I
a = 0.19361 + 1.61044I
b = 1.29556 + 1.27695I
0.75125 + 6.53634I 5.69189 6.84556I
u = 0.876962 + 0.699049I
a = 0.270200 0.490177I
b = 0.579612 + 0.240984I
0.75125 + 6.53634I 5.69189 6.84556I
u = 0.876962 0.699049I
a = 0.270200 + 0.490177I
b = 0.579612 0.240984I
0.75125 6.53634I 5.69189 + 6.84556I
u = 0.955338 + 0.726047I
a = 0.179005 + 0.581867I
b = 0.593473 0.425914I
0.516726 1.138040I 1.96620 + 2.22050I
u = 0.955338 0.726047I
a = 0.179005 0.581867I
b = 0.593473 + 0.425914I
0.516726 + 1.138040I 1.96620 2.22050I
u = 0.955338 + 0.726047I
a = 0.860786 0.442427I
b = 1.143560 + 0.202303I
0.516726 + 1.138040I 1.96620 2.22050I
u = 0.955338 0.726047I
a = 0.860786 + 0.442427I
b = 1.143560 0.202303I
0.516726 1.138040I 1.96620 + 2.22050I
u = 1.256610 + 0.086547I
a = 0.55265 1.53743I
b = 0.56141 1.97978I
6.35463 4.54485I 17.3071 + 6.6446I
u = 1.256610 0.086547I
a = 0.55265 + 1.53743I
b = 0.56141 + 1.97978I
6.35463 + 4.54485I 17.3071 6.6446I
26
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.256610 + 0.086547I
a = 0.325560 + 0.123216I
b = 0.398439 0.183010I
6.35463 + 4.54485I 17.3071 6.6446I
u = 1.256610 0.086547I
a = 0.325560 0.123216I
b = 0.398439 + 0.183010I
6.35463 4.54485I 17.3071 + 6.6446I
u = 0.649819 + 0.050171I
a = 0.20068 + 4.09044I
b = 0.07481 + 2.66812I
3.88718 + 3.93091I 2.97598 2.31585I
u = 0.649819 0.050171I
a = 0.20068 4.09044I
b = 0.07481 2.66812I
3.88718 3.93091I 2.97598 + 2.31585I
u = 0.649819 + 0.050171I
a = 1.139310 + 0.512299I
b = 0.766045 0.275742I
3.88718 3.93091I 2.97598 + 2.31585I
u = 0.649819 0.050171I
a = 1.139310 0.512299I
b = 0.766045 + 0.275742I
3.88718 + 3.93091I 2.97598 2.31585I
u = 1.63875
a = 1.79237
b = 2.93725
10.0162 99.1180
u = 1.63875
a = 0.0575881
b = 0.0943725
10.0162 99.1180
27
VI. I
u
6
= h−u
2
+ b u + 1, u
2
+ a + 1, u
3
+ u
2
1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
7
=
u
2
1
u
2
+ u 1
a
11
=
1
u
2
a
1
=
u
u
a
4
=
u
u
a
3
=
u
u
a
8
=
0
u
a
2
=
u
u
2
+ u 1
a
6
=
0
u
a
9
=
u
2
+ 1
u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 6
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
11
u
3
+ u
2
+ 2u + 1
c
3
, c
5
u
3
c
4
, c
9
, c
10
u
3
u
2
+ 1
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
11
y
3
+ 3y
2
+ 2y 1
c
3
, c
5
y
3
c
4
, c
9
, c
10
y
3
y
2
+ 2y 1
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.78492 1.30714I
b = 1.66236 0.56228I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.877439 0.744862I
a = 0.78492 + 1.30714I
b = 1.66236 + 0.56228I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.754878
a = 0.430160
b = 0.324718
1.11345 9.01950
31
VII. I
u
7
= h−au u
2
+ b + u 1, u
2
a + a
2
+ 2au + u
2
a + 1, u
3
u
2
+ 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
7
=
a
au + u
2
u + 1
a
11
=
1
u
2
a
1
=
au + u
2
a 2u + 1
au + 2u
2
a 3u + 1
a
4
=
u
u
a
3
=
au + u
2
a u + 1
au + 2u
2
a 2u + 1
a
8
=
u
2
u
au + 2u
2
a 3u + 1
a
2
=
au + u
2
a u + 1
au + u
2
u + 1
a
6
=
u
2
u
au + 2u
2
a 2u + 1
a
9
=
u
2
+ 1
u
2
a
9
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 18
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
3
+ u
2
+ 2u + 1)
2
c
2
, c
6
, c
8
c
11
u
6
+ u
5
+ 2u
4
4u
2
+ 2u 1
c
3
, c
5
(u + 1)
6
c
4
, c
9
, c
10
(u
3
+ u
2
1)
2
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
6
, c
8
c
11
y
6
+ 3y
5
4y
4
22y
3
+ 12y
2
+ 4y + 1
c
3
, c
5
(y 1)
6
c
4
, c
9
, c
10
(y
3
y
2
+ 2y 1)
2
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.256475 1.286130I
b = 1.52067 0.37518I
0.26574 2.82812I 14.4902 + 2.9794I
u = 0.877439 + 0.744862I
a = 0.796273 + 1.103550I
b = 1.18303 + 0.93746I
0.26574 2.82812I 14.4902 + 2.9794I
u = 0.877439 0.744862I
a = 0.256475 + 1.286130I
b = 1.52067 + 0.37518I
0.26574 + 2.82812I 14.4902 2.9794I
u = 0.877439 0.744862I
a = 0.796273 1.103550I
b = 1.18303 0.93746I
0.26574 + 2.82812I 14.4902 2.9794I
u = 0.754878
a = 0.644735
b = 1.83802
4.40332 21.0200
u = 0.754878
a = 2.43486
b = 0.486696
4.40332 21.0200
35
VIII. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
1
0
a
7
=
0
1
a
11
=
1
0
a
1
=
1
1
a
4
=
1
0
a
3
=
0
1
a
8
=
0
1
a
2
=
1
1
a
6
=
1
1
a
9
=
1
0
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
36
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
9
, c
10
u
c
2
, c
5
, c
8
u 1
c
3
, c
6
, c
11
u + 1
37
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
9
, c
10
y
c
2
, c
3
, c
5
c
6
, c
8
, c
11
y 1
38
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
39
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u(u
3
+ u
2
+ 2u + 1)
3
(u
6
2u
4
u
3
+ 3u
2
+ u 1)
2
· (u
12
3u
11
+ ··· + 30u + 25)(u
12
+ u
11
+ ··· 4u + 1)
2
· (u
14
u
13
+ ··· + 2u
2
+ 2)
· (u
18
+ 2u
16
u
14
u
12
+ 12u
10
+ u
8
20u
6
+ u
4
+ 20u
2
4)
c
2
, c
8
(u 1)(u
3
+ u
2
+ 2u + 1)(u
6
+ u
5
+ 2u
4
4u
2
+ 2u 1)
· (u
12
u
11
+ ··· 7u + 1)(u
12
u
11
+ ··· + 4u + 7)
· (u
14
u
13
+ ··· u + 1)(u
18
5u
16
+ ··· + 5u + 1)
· (u
24
+ u
23
+ ··· + 94u + 19)
c
3
u
3
(u + 1)
7
(u
2
+ u + 1)
6
(u
4
+ u
3
2u + 1)
6
· (u
12
5u
11
+ ··· + 42u 7)(u
14
7u
13
+ ··· 25u + 11)
· (u
18
+ 10u
17
+ ··· + 4u + 1)
c
4
, c
9
, c
10
u(u
3
u
2
+ 1)(u
3
+ u
2
1)
14
(u
6
4u
5
+ 6u
4
3u
3
3u
2
+ 6u 4)
2
· (u
14
6u
13
+ ··· 16u + 8)(u
18
8u
16
+ ··· + 28u
2
4)
c
5
u
3
(u 1)(u + 1)
6
(u
2
+ u + 1)
6
(u
4
+ u
3
2u + 1)
6
· (u
12
5u
11
+ ··· + 42u 7)(u
14
7u
13
+ ··· 25u + 11)
· (u
18
10u
17
+ ··· 4u + 1)
c
6
, c
11
(u + 1)(u
3
+ u
2
+ 2u + 1)(u
6
+ u
5
+ 2u
4
4u
2
+ 2u 1)
· (u
12
u
11
+ ··· 7u + 1)(u
12
u
11
+ ··· + 4u + 7)
· (u
14
u
13
+ ··· u + 1)(u
18
5u
16
+ ··· 5u + 1)
· (u
24
+ u
23
+ ··· + 94u + 19)
40
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y(y
3
+ 3y
2
+ 2y 1)
3
(y
6
4y
5
+ 10y
4
15y
3
+ 15y
2
7y + 1)
2
· (y
9
+ 2y
8
y
7
y
6
+ 12y
5
+ y
4
20y
3
+ y
2
+ 20y 4)
2
· (y
12
9y
11
+ ··· 100y + 625)(y
12
+ 3y
11
+ ··· 8y + 1)
2
· (y
14
+ 3y
13
+ ··· + 8y + 4)
c
2
, c
6
, c
8
c
11
(y 1)(y
3
+ 3y
2
+ 2y 1)(y
6
+ 3y
5
+ ··· + 4y + 1)
· (y
12
+ y
11
+ ··· 59y + 1)(y
12
+ 3y
11
+ ··· + 208y + 49)
· (y
14
+ 11y
13
+ ··· + 21y + 1)(y
18
10y
17
+ ··· 9y + 1)
· (y
24
15y
23
+ ··· + 6136y + 361)
c
3
, c
5
y
3
(y 1)
7
(y
2
+ y + 1)
6
(y
4
y
3
+ 6y
2
4y + 1)
6
· (y
12
5y
11
+ ··· + 154y + 49)(y
14
7y
13
+ ··· 493y + 121)
· (y
18
10y
17
+ ··· 2y + 1)
c
4
, c
9
, c
10
y(y
3
y
2
+ 2y 1)
15
(y
6
4y
5
+ 6y
4
5y
3
3y
2
12y + 16)
2
· (y
9
8y
8
+ 29y
7
68y
6
+ 115y
5
141y
4
+ 126y
3
79y
2
+ 28y 4)
2
· (y
14
8y
13
+ ··· + 160y + 64)
41