12a
0002
(K12a
0002
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 9 11 4 12 1 7 10
Solving Sequence
7,12
11
4,8
5 9 10 1 6 3 2
c
11
c
7
c
4
c
8
c
9
c
12
c
6
c
3
c
2
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2.87313 × 10
334
u
104
9.21887 × 10
334
u
103
+ ··· + 1.15405 × 10
337
b + 3.50101 × 10
336
,
2.56029 × 10
334
u
104
+ 5.49406 × 10
334
u
103
+ ··· + 6.59460 × 10
336
a 2.98633 × 10
337
,
u
105
3u
104
+ ··· + 2048u + 1024i
I
u
2
= h−u
2
a + b a, u
4
a + u
3
a + u
4
+ 2u
2
a + a
2
+ au + u
2
+ a u, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
I
v
1
= ha, v
3
+ 2v
2
+ b + 2v, v
4
+ 2v
3
+ 3v
2
+ v + 1i
I
v
2
= ha, v
3
v
2
+ b + 1, v
6
+ 3v
5
+ 4v
4
+ 2v
3
+ 1i
* 4 irreducible components of dim
C
= 0, with total 125 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.87 × 10
334
u
104
9.22 × 10
334
u
103
+ · · · + 1.15 × 10
337
b + 3.50 ×
10
336
, 2.56 × 10
334
u
104
+ 5.49 × 10
334
u
103
+ · · · + 6.59 × 10
336
a 2.99 ×
10
337
, u
105
3u
104
+ · · · + 2048u + 1024i
(i) Arc colorings
a
7
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
4
=
0.00388240u
104
0.00833116u
103
+ ··· + 11.4924u + 4.52845
0.00248959u
104
+ 0.00798824u
103
+ ··· 4.48147u 0.303366
a
8
=
u
u
3
+ u
a
5
=
0.00498777u
104
0.0112515u
103
+ ··· + 14.7026u + 5.39070
0.00215259u
104
+ 0.00751970u
103
+ ··· 3.21368u + 0.153629
a
9
=
0.000519769u
104
+ 0.00481996u
103
+ ··· + 4.67049u + 3.48978
0.00119259u
104
+ 0.00216389u
103
+ ··· 4.22800u 2.41288
a
10
=
0.000672817u
104
+ 0.00265608u
103
+ ··· + 8.89849u + 5.90266
0.00119259u
104
+ 0.00216389u
103
+ ··· 4.22800u 2.41288
a
1
=
0.000672817u
104
+ 0.00265608u
103
+ ··· + 8.89849u + 5.90266
0.00129632u
104
+ 0.00157290u
103
+ ··· 6.03440u 2.37383
a
6
=
0.00489883u
104
+ 0.0141883u
103
+ ··· 8.53327u 2.46195
0.00235848u
104
0.00763297u
103
+ ··· + 4.80576u + 0.638462
a
3
=
0.00606696u
104
+ 0.0253348u
103
+ ··· + 2.81502u + 4.85586
0.00220680u
104
0.0101609u
103
+ ··· 3.08436u 1.82736
a
2
=
0.00434510u
104
+ 0.0185156u
103
+ ··· 0.931222u + 2.88768
0.000320191u
104
0.00175592u
103
+ ··· 9.30691u 3.74997
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00265333u
104
+ 0.00375222u
103
+ ··· 32.4877u 13.5243
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
105
+ 53u
104
+ ··· 7u 1
c
2
, c
5
u
105
+ 7u
104
+ ··· 7u 1
c
3
u
105
7u
104
+ ··· 40152u 14308
c
4
, c
8
u
105
2u
104
+ ··· 2048u 1024
c
6
u
105
4u
104
+ ··· 66488u 52489
c
7
, c
11
u
105
3u
104
+ ··· + 2048u + 1024
c
9
, c
10
, c
12
u
105
13u
104
+ ··· 7u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
105
+ 5y
104
+ ··· + 33y 1
c
2
, c
5
y
105
+ 53y
104
+ ··· 7y 1
c
3
y
105
43y
104
+ ··· + 5145658168y 204718864
c
4
, c
8
y
105
+ 60y
104
+ ··· 16777216y 1048576
c
6
y
105
62y
104
+ ··· 163409354104y 2755095121
c
7
, c
11
y
105
+ 69y
104
+ ··· 9961472y 1048576
c
9
, c
10
, c
12
y
105
105y
104
+ ··· 33y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.268285 + 0.949256I
a = 0.872590 + 0.818513I
b = 0.525404 0.588907I
5.18965 8.64562I 0
u = 0.268285 0.949256I
a = 0.872590 0.818513I
b = 0.525404 + 0.588907I
5.18965 + 8.64562I 0
u = 0.445627 + 0.931879I
a = 0.200127 + 0.084474I
b = 0.298515 0.395878I
0.21716 + 2.22153I 0
u = 0.445627 0.931879I
a = 0.200127 0.084474I
b = 0.298515 + 0.395878I
0.21716 2.22153I 0
u = 0.198192 + 1.018210I
a = 0.605963 1.018640I
b = 0.512264 + 0.694594I
3.26753 3.83052I 0
u = 0.198192 1.018210I
a = 0.605963 + 1.018640I
b = 0.512264 0.694594I
3.26753 + 3.83052I 0
u = 0.627731 + 0.833901I
a = 0.281088 0.037619I
b = 0.96977 + 1.12758I
5.08057 + 5.13162I 0
u = 0.627731 0.833901I
a = 0.281088 + 0.037619I
b = 0.96977 1.12758I
5.08057 5.13162I 0
u = 0.705026 + 0.644209I
a = 0.425448 0.094462I
b = 0.635657 + 0.076444I
1.48237 + 6.07517I 0
u = 0.705026 0.644209I
a = 0.425448 + 0.094462I
b = 0.635657 0.076444I
1.48237 6.07517I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.634957 + 0.835508I
a = 0.302189 0.088053I
b = 0.575178 + 0.266330I
2.06078 1.03844I 0
u = 0.634957 0.835508I
a = 0.302189 + 0.088053I
b = 0.575178 0.266330I
2.06078 + 1.03844I 0
u = 0.808540 + 0.675363I
a = 0.251435 + 0.002877I
b = 1.08572 + 1.01249I
5.33745 2.51054I 0
u = 0.808540 0.675363I
a = 0.251435 0.002877I
b = 1.08572 1.01249I
5.33745 + 2.51054I 0
u = 1.06632
a = 0.163913
b = 1.12178
2.99893 0
u = 0.205855 + 1.066340I
a = 2.19332 + 0.21215I
b = 0.710064 1.124110I
1.54671 + 0.30676I 0
u = 0.205855 1.066340I
a = 2.19332 0.21215I
b = 0.710064 + 1.124110I
1.54671 0.30676I 0
u = 0.877564 + 0.252033I
a = 0.177938 0.052301I
b = 0.901469 0.560381I
2.76612 + 0.46150I 0
u = 0.877564 0.252033I
a = 0.177938 + 0.052301I
b = 0.901469 + 0.560381I
2.76612 0.46150I 0
u = 0.280688 + 1.057980I
a = 0.186025 + 0.149043I
b = 0.059742 0.689656I
0.86784 + 2.21470I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.280688 1.057980I
a = 0.186025 0.149043I
b = 0.059742 + 0.689656I
0.86784 2.21470I 0
u = 0.016037 + 1.111550I
a = 0.12718 1.49148I
b = 0.684949 + 1.038480I
2.96866 1.50877I 0
u = 0.016037 1.111550I
a = 0.12718 + 1.49148I
b = 0.684949 1.038480I
2.96866 + 1.50877I 0
u = 1.123720 + 0.056254I
a = 0.18963 2.18372I
b = 0.21888 4.11381I
3.53447 2.64383I 0
u = 1.123720 0.056254I
a = 0.18963 + 2.18372I
b = 0.21888 + 4.11381I
3.53447 + 2.64383I 0
u = 0.293441 + 1.107970I
a = 2.16101 + 0.16158I
b = 0.45521 + 1.39470I
1.30226 4.97324I 0
u = 0.293441 1.107970I
a = 2.16101 0.16158I
b = 0.45521 1.39470I
1.30226 + 4.97324I 0
u = 0.555516 + 0.642632I
a = 0.321795 0.007589I
b = 0.947740 1.036810I
2.35481 + 1.07727I 4.10629 + 0.I
u = 0.555516 0.642632I
a = 0.321795 + 0.007589I
b = 0.947740 + 1.036810I
2.35481 1.07727I 4.10629 + 0.I
u = 0.068982 + 1.152660I
a = 0.13772 + 1.68779I
b = 0.84014 1.26733I
4.49778 + 3.58279I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.068982 1.152660I
a = 0.13772 1.68779I
b = 0.84014 + 1.26733I
4.49778 3.58279I 0
u = 0.133289 + 1.147960I
a = 0.207378 0.161416I
b = 0.094944 + 0.926840I
3.87382 1.25509I 0
u = 0.133289 1.147960I
a = 0.207378 + 0.161416I
b = 0.094944 0.926840I
3.87382 + 1.25509I 0
u = 0.577291 + 0.590200I
a = 0.455697 0.020258I
b = 0.542949 0.042937I
0.76544 + 1.83227I 2.97063 4.30547I
u = 0.577291 0.590200I
a = 0.455697 + 0.020258I
b = 0.542949 + 0.042937I
0.76544 1.83227I 2.97063 + 4.30547I
u = 0.486058 + 1.084780I
a = 0.530495 + 0.114300I
b = 0.451814 0.304162I
6.71480 2.28994I 0
u = 0.486058 1.084780I
a = 0.530495 0.114300I
b = 0.451814 + 0.304162I
6.71480 + 2.28994I 0
u = 0.019738 + 1.215440I
a = 1.58587 + 0.35008I
b = 0.264532 0.433564I
4.96141 + 2.10767I 0
u = 0.019738 1.215440I
a = 1.58587 0.35008I
b = 0.264532 + 0.433564I
4.96141 2.10767I 0
u = 1.212520 + 0.089544I
a = 0.175810 + 0.003726I
b = 1.378360 + 0.143579I
5.80757 + 3.81804I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.212520 0.089544I
a = 0.175810 0.003726I
b = 1.378360 0.143579I
5.80757 3.81804I 0
u = 0.299648 + 1.178790I
a = 0.201498 0.148660I
b = 0.162017 + 0.863030I
3.49667 + 6.31468I 0
u = 0.299648 1.178790I
a = 0.201498 + 0.148660I
b = 0.162017 0.863030I
3.49667 6.31468I 0
u = 0.020338 + 0.774375I
a = 0.307442 + 0.318165I
b = 0.688910 0.608860I
1.50574 + 1.45150I 6.88231 3.91032I
u = 0.020338 0.774375I
a = 0.307442 0.318165I
b = 0.688910 + 0.608860I
1.50574 1.45150I 6.88231 + 3.91032I
u = 0.070255 + 1.259590I
a = 1.50047 0.35184I
b = 0.147458 + 0.318912I
7.80115 + 7.15839I 0
u = 0.070255 1.259590I
a = 1.50047 + 0.35184I
b = 0.147458 0.318912I
7.80115 7.15839I 0
u = 0.053874 + 1.280380I
a = 1.58471 0.21128I
b = 0.108135 + 0.620275I
9.46339 1.53906I 0
u = 0.053874 1.280380I
a = 1.58471 + 0.21128I
b = 0.108135 0.620275I
9.46339 + 1.53906I 0
u = 0.697952 + 0.137916I
a = 0.03495 + 2.03419I
b = 0.003394 + 1.178190I
3.25405 + 8.33976I 0.04715 7.24075I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697952 0.137916I
a = 0.03495 2.03419I
b = 0.003394 1.178190I
3.25405 8.33976I 0.04715 + 7.24075I
u = 1.278710 + 0.215842I
a = 0.39628 1.68073I
b = 0.31459 3.54098I
6.66508 4.90614I 0
u = 1.278710 0.215842I
a = 0.39628 + 1.68073I
b = 0.31459 + 3.54098I
6.66508 + 4.90614I 0
u = 0.395632 + 1.237840I
a = 1.74409 + 0.40492I
b = 0.00591 + 1.44676I
4.09455 7.49095I 0
u = 0.395632 1.237840I
a = 1.74409 0.40492I
b = 0.00591 1.44676I
4.09455 + 7.49095I 0
u = 0.166036 + 1.294570I
a = 0.159030 + 0.898530I
b = 0.095823 1.086560I
8.00836 2.78848I 0
u = 0.166036 1.294570I
a = 0.159030 0.898530I
b = 0.095823 + 1.086560I
8.00836 + 2.78848I 0
u = 0.533755 + 1.206200I
a = 0.347377 + 0.158220I
b = 0.477048 0.032193I
5.70848 5.64417I 0
u = 0.533755 1.206200I
a = 0.347377 0.158220I
b = 0.477048 + 0.032193I
5.70848 + 5.64417I 0
u = 0.336147 + 1.282090I
a = 1.68636 0.25958I
b = 0.030211 1.283740I
8.88944 4.03584I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.336147 1.282090I
a = 1.68636 + 0.25958I
b = 0.030211 + 1.283740I
8.88944 + 4.03584I 0
u = 0.428396 + 1.265900I
a = 1.66072 0.44565I
b = 0.09249 1.47226I
6.7884 12.7058I 0
u = 0.428396 1.265900I
a = 1.66072 + 0.44565I
b = 0.09249 + 1.47226I
6.7884 + 12.7058I 0
u = 0.644479 + 0.156070I
a = 0.01947 2.09237I
b = 0.064347 1.144410I
0.72998 + 3.43108I 3.23111 3.53029I
u = 0.644479 0.156070I
a = 0.01947 + 2.09237I
b = 0.064347 + 1.144410I
0.72998 3.43108I 3.23111 + 3.53029I
u = 1.314130 + 0.258446I
a = 0.42118 + 1.59065I
b = 0.29191 + 3.44936I
9.44734 10.06730I 0
u = 1.314130 0.258446I
a = 0.42118 1.59065I
b = 0.29191 3.44936I
9.44734 + 10.06730I 0
u = 1.334250 + 0.147531I
a = 0.24745 + 1.64891I
b = 0.17768 + 3.57162I
11.34640 1.32441I 0
u = 1.334250 0.147531I
a = 0.24745 1.64891I
b = 0.17768 3.57162I
11.34640 + 1.32441I 0
u = 0.622293 + 0.071084I
a = 0.05136 + 2.18813I
b = 0.009203 + 1.059750I
5.03370 + 0.34144I 2.24738 0.66837I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.622293 0.071084I
a = 0.05136 2.18813I
b = 0.009203 1.059750I
5.03370 0.34144I 2.24738 + 0.66837I
u = 0.457823 + 0.346017I
a = 0.781432 0.194359I
b = 0.485789 + 0.019245I
1.18816 + 0.97679I 5.99668 2.87740I
u = 0.457823 0.346017I
a = 0.781432 + 0.194359I
b = 0.485789 0.019245I
1.18816 0.97679I 5.99668 + 2.87740I
u = 0.317562 + 0.458650I
a = 0.08848 + 2.24799I
b = 0.812978 + 0.897740I
0.26703 2.76145I 2.39627 + 0.24825I
u = 0.317562 0.458650I
a = 0.08848 2.24799I
b = 0.812978 0.897740I
0.26703 + 2.76145I 2.39627 0.24825I
u = 0.451679 + 0.297070I
a = 0.18981 2.20906I
b = 0.382918 1.024900I
1.09706 + 1.79646I 4.50707 4.72051I
u = 0.451679 0.297070I
a = 0.18981 + 2.20906I
b = 0.382918 + 1.024900I
1.09706 1.79646I 4.50707 + 4.72051I
u = 0.075882 + 0.532508I
a = 1.165090 + 0.438248I
b = 1.61513 0.31149I
1.30443 + 1.41880I 9.48971 7.96647I
u = 0.075882 0.532508I
a = 1.165090 0.438248I
b = 1.61513 + 0.31149I
1.30443 1.41880I 9.48971 + 7.96647I
u = 0.53134 + 1.37400I
a = 0.342719 + 0.387464I
b = 0.675891 0.459262I
7.27145 5.73841I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.53134 1.37400I
a = 0.342719 0.387464I
b = 0.675891 + 0.459262I
7.27145 + 5.73841I 0
u = 0.50261 + 1.39495I
a = 2.21661 + 0.24791I
b = 0.46456 3.43991I
8.15890 + 3.07952I 0
u = 0.50261 1.39495I
a = 2.21661 0.24791I
b = 0.46456 + 3.43991I
8.15890 3.07952I 0
u = 0.487122 + 0.146522I
a = 1.089400 + 0.057239I
b = 0.417296 0.034703I
0.44889 3.10218I 2.70006 + 3.61407I
u = 0.487122 0.146522I
a = 1.089400 0.057239I
b = 0.417296 + 0.034703I
0.44889 + 3.10218I 2.70006 3.61407I
u = 0.55448 + 1.38660I
a = 2.18485 + 0.09212I
b = 0.71711 + 3.38390I
7.75540 + 8.66586I 0
u = 0.55448 1.38660I
a = 2.18485 0.09212I
b = 0.71711 3.38390I
7.75540 8.66586I 0
u = 0.47683 + 1.45135I
a = 0.353718 0.458048I
b = 0.702962 + 0.689832I
10.89430 2.15329I 0
u = 0.47683 1.45135I
a = 0.353718 + 0.458048I
b = 0.702962 0.689832I
10.89430 + 2.15329I 0
u = 0.58357 + 1.41607I
a = 0.387162 0.398248I
b = 0.835172 + 0.462307I
10.0756 10.2328I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.58357 1.41607I
a = 0.387162 + 0.398248I
b = 0.835172 0.462307I
10.0756 + 10.2328I 0
u = 0.66226 + 1.40562I
a = 1.78137 + 0.44979I
b = 0.87217 + 3.06337I
10.4930 + 11.8093I 0
u = 0.66226 1.40562I
a = 1.78137 0.44979I
b = 0.87217 3.06337I
10.4930 11.8093I 0
u = 0.69338 + 1.40653I
a = 1.68629 0.51434I
b = 0.88007 2.99623I
13.1444 + 17.1838I 0
u = 0.69338 1.40653I
a = 1.68629 + 0.51434I
b = 0.88007 + 2.99623I
13.1444 17.1838I 0
u = 0.334255 + 0.268885I
a = 2.00226 0.37579I
b = 2.98510 0.26969I
1.88065 2.35835I 10.0083 15.2059I
u = 0.334255 0.268885I
a = 2.00226 + 0.37579I
b = 2.98510 + 0.26969I
1.88065 + 2.35835I 10.0083 + 15.2059I
u = 0.37185 + 1.53450I
a = 1.43684 + 0.60839I
b = 0.24963 2.78944I
12.72110 + 1.04025I 0
u = 0.37185 1.53450I
a = 1.43684 0.60839I
b = 0.24963 + 2.78944I
12.72110 1.04025I 0
u = 0.64364 + 1.45743I
a = 1.69453 0.26926I
b = 0.76095 3.05481I
15.5796 + 8.3556I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.64364 1.45743I
a = 1.69453 + 0.26926I
b = 0.76095 + 3.05481I
15.5796 8.3556I 0
u = 0.33215 + 1.58221I
a = 1.271400 0.600285I
b = 0.31232 + 2.64286I
15.9138 4.0187I 0
u = 0.33215 1.58221I
a = 1.271400 + 0.600285I
b = 0.31232 2.64286I
15.9138 + 4.0187I 0
u = 0.44101 + 1.56678I
a = 1.45585 0.39191I
b = 0.41727 + 2.86735I
17.1532 + 5.1373I 0
u = 0.44101 1.56678I
a = 1.45585 + 0.39191I
b = 0.41727 2.86735I
17.1532 5.1373I 0
15
II. I
u
2
= h−u
2
a + b a, u
4
a + u
3
a + u
4
+ 2u
2
a + a
2
+ au + u
2
+ a u, u
5
+
u
4
+ 2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
7
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
4
=
a
u
2
a + a
a
8
=
u
u
3
+ u
a
5
=
a
u
2
a + a
a
9
=
u
u
3
+ u
a
10
=
u
3
u
3
+ u
a
1
=
u
3
u
4
+ u
3
+ u
2
+ 1
a
6
=
u
3
u
4
u
3
u
2
1
a
3
=
u
4
a + a
u
3
a
a
2
=
u
4
a + u
4
+ u
3
+ 2u
2
+ a + u + 1
u
3
a + u
4
+ u
3
+ 2u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
4
a 3u
3
a + u
4
u
2
a 3u
3
+ 2au u
2
3u 4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
5
c
2
(u
2
+ u + 1)
5
c
4
, c
8
u
10
c
6
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
7
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
9
, c
10
(u
5
+ u
4
2u
3
u
2
+ u 1)
2
c
11
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)
2
c
12
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
5
c
4
, c
8
y
10
c
6
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
7
, c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
9
, c
10
, c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 1.114310 0.148503I
b = 0.571671 + 0.556363I
0.32910 + 3.56046I 2.43337 7.40396I
u = 0.339110 + 0.822375I
a = 0.685764 0.890773I
b = 0.195989 0.773263I
0.329100 0.499304I 1.41726 0.48644I
u = 0.339110 0.822375I
a = 1.114310 + 0.148503I
b = 0.571671 0.556363I
0.32910 3.56046I 2.43337 + 7.40396I
u = 0.339110 0.822375I
a = 0.685764 + 0.890773I
b = 0.195989 + 0.773263I
0.329100 + 0.499304I 1.41726 + 0.48644I
u = 0.766826
a = 0.652039 + 1.129360I
b = 1.03545 + 1.79345I
2.40108 + 2.02988I 0.137791 1.258916I
u = 0.766826
a = 0.652039 1.129360I
b = 1.03545 1.79345I
2.40108 2.02988I 0.137791 + 1.258916I
u = 0.455697 + 1.200150I
a = 0.492416 0.603584I
b = 0.774795 0.398153I
5.87256 6.43072I 7.21285 + 8.37016I
u = 0.455697 + 1.200150I
a = 0.768927 0.124653I
b = 0.042587 + 0.870069I
5.87256 2.37095I 1.90884 + 0.95814I
u = 0.455697 1.200150I
a = 0.492416 + 0.603584I
b = 0.774795 + 0.398153I
5.87256 + 6.43072I 7.21285 8.37016I
u = 0.455697 1.200150I
a = 0.768927 + 0.124653I
b = 0.042587 0.870069I
5.87256 + 2.37095I 1.90884 0.95814I
19
III. I
v
1
= ha, v
3
+ 2v
2
+ b + 2v , v
4
+ 2v
3
+ 3v
2
+ v + 1i
(i) Arc colorings
a
7
=
v
0
a
12
=
1
0
a
11
=
1
0
a
4
=
0
v
3
2v
2
2v
a
8
=
v
0
a
5
=
v
3
+ v
2
+ v
v
3
2v
2
2v
a
9
=
v
1
a
10
=
v + 1
1
a
1
=
v
1
a
6
=
v
2
+ v
v
a
3
=
v
3
v
2
v 1
v
3
v
2
2v + 1
a
2
=
v
3
2v
2
v 1
v
3
v
2
2v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5v
3
6v
2
9v
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
4
2u
3
+ 3u
2
u + 1
c
2
, c
4
u
4
+ u
2
+ u + 1
c
3
u
4
+ 3u
3
+ 4u
2
+ 3u + 2
c
5
, c
8
u
4
+ u
2
u + 1
c
7
, c
11
u
4
c
9
, c
10
(u 1)
4
c
12
(u + 1)
4
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
2
, c
4
, c
5
c
8
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
3
y
4
y
3
+ 2y
2
+ 7y + 4
c
7
, c
11
y
4
c
9
, c
10
, c
12
(y 1)
4
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.043315 + 0.641200I
a = 0
b = 0.851808 0.911292I
0.66484 + 1.39709I 2.57868 4.13745I
v = 0.043315 0.641200I
a = 0
b = 0.851808 + 0.911292I
0.66484 1.39709I 2.57868 + 4.13745I
v = 0.95668 + 1.22719I
a = 0
b = 0.351808 + 0.720342I
4.26996 + 7.64338I 5.07868 4.56334I
v = 0.95668 1.22719I
a = 0
b = 0.351808 0.720342I
4.26996 7.64338I 5.07868 + 4.56334I
23
IV. I
v
2
= ha, v
3
v
2
+ b + 1, v
6
+ 3v
5
+ 4v
4
+ 2v
3
+ 1i
(i) Arc colorings
a
7
=
v
0
a
12
=
1
0
a
11
=
1
0
a
4
=
0
v
3
+ v
2
1
a
8
=
v
0
a
5
=
v
5
+ v
4
v
2
v
3
+ v
2
1
a
9
=
v
1
a
10
=
v + 1
1
a
1
=
v
1
a
6
=
v
2
+ v
v
a
3
=
v
5
2v
4
2v
3
v
2
v
v
5
+ 3v
4
+ 4v
3
+ 2v
2
a
2
=
v
3
v
2
v + 1
v
5
+ 2v
4
+ 2v
3
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v
5
7v
4
v
3
+ 7v
2
+ 6v 6
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
6
3u
5
+ 4u
4
2u
3
+ 1
c
2
, c
4
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
3
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
7
, c
11
u
6
c
9
, c
10
(u 1)
6
c
12
(u + 1)
6
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
2
, c
4
, c
5
c
8
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
3
(y
3
y
2
+ 2y 1)
2
c
7
, c
11
y
6
c
9
, c
10
, c
12
(y 1)
6
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.753774 + 0.998963I
a = 0
b = 0.398606 0.800120I
1.91067 + 2.82812I 1.88527 2.08748I
v = 0.753774 0.998963I
a = 0
b = 0.398606 + 0.800120I
1.91067 2.82812I 1.88527 + 2.08748I
v = 1.162360 + 0.635452I
a = 0
b = 0.215080 + 0.841795I
6.04826 10.27439 + 0.99756I
v = 1.162360 0.635452I
a = 0
b = 0.215080 0.841795I
6.04826 10.27439 0.99756I
v = 0.416133 + 0.436684I
a = 0
b = 1.183530 + 0.507021I
1.91067 2.82812I 2.34034 + 5.36114I
v = 0.416133 0.436684I
a = 0
b = 1.183530 0.507021I
1.91067 + 2.82812I 2.34034 5.36114I
27
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
5
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
105
+ 53u
104
+ ··· 7u 1)
c
2
(u
2
+ u + 1)
5
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
105
+ 7u
104
+ ··· 7u 1)
c
3
(u
2
u + 1)
5
(u
3
u
2
+ 1)
2
(u
4
+ 3u
3
+ 4u
2
+ 3u + 2)
· (u
105
7u
104
+ ··· 40152u 14308)
c
4
u
10
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
105
2u
104
+ ··· 2048u 1024)
c
5
(u
2
u + 1)
5
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
105
+ 7u
104
+ ··· 7u 1)
c
6
(u
4
2u
3
+ 3u
2
u + 1)(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
· (u
6
3u
5
+ 4u
4
2u
3
+ 1)(u
105
4u
104
+ ··· 66488u 52489)
c
7
u
10
(u
5
u
4
+ ··· + u 1)
2
(u
105
3u
104
+ ··· + 2048u + 1024)
c
8
u
10
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
105
2u
104
+ ··· 2048u 1024)
c
9
, c
10
((u 1)
10
)(u
5
+ u
4
+ ··· + u 1)
2
(u
105
13u
104
+ ··· 7u + 1)
c
11
u
10
(u
5
+ u
4
+ ··· + u + 1)
2
(u
105
3u
104
+ ··· + 2048u + 1024)
c
12
((u + 1)
10
)(u
5
u
4
+ ··· + u + 1)
2
(u
105
13u
104
+ ··· 7u + 1)
28
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
5
)(y
4
+ 2y
3
+ ··· + 5y + 1)(y
6
y
5
+ ··· + 8y
2
+ 1)
· (y
105
+ 5y
104
+ ··· + 33y 1)
c
2
, c
5
(y
2
+ y + 1)
5
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
105
+ 53y
104
+ ··· 7y 1)
c
3
(y
2
+ y + 1)
5
(y
3
y
2
+ 2y 1)
2
(y
4
y
3
+ 2y
2
+ 7y + 4)
· (y
105
43y
104
+ ··· + 5145658168y 204718864)
c
4
, c
8
y
10
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
105
+ 60y
104
+ ··· 16777216y 1048576)
c
6
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
· (y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
105
62y
104
+ ··· 163409354104y 2755095121)
c
7
, c
11
y
10
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
· (y
105
+ 69y
104
+ ··· 9961472y 1048576)
c
9
, c
10
, c
12
(y 1)
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
105
105y
104
+ ··· 33y 1)
29