12a
0009
(K12a
0009
)
A knot diagram
1
Linearized knot diagam
3 5 6 8 2 11 4 1 12 7 10 9
Solving Sequence
4,7
8
5,11
6 3 2 1 10 12 9
c
7
c
4
c
6
c
3
c
2
c
1
c
10
c
11
c
9
c
5
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1.86386 × 10
139
u
66
+ 4.31229 × 10
138
u
65
+ ··· + 1.98538 × 10
140
b + 5.26231 × 10
141
,
1.05918 × 10
140
u
66
4.57520 × 10
138
u
65
+ ··· + 7.94151 × 10
140
a + 2.63032 × 10
142
,
u
67
+ u
66
+ ··· + 384u + 256i
I
v
1
= ha, 18v
7
26v
6
+ 12v
5
78v
4
+ 71v
3
+ 30v
2
+ 19b + 6v 2, v
8
2v
7
+ v
6
4v
5
+ 6v
4
+ v
3
2v
2
v + 1i
* 2 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.86 × 10
139
u
66
+ 4.31 × 10
138
u
65
+ · · · + 1.99 × 10
140
b + 5.26 ×
10
141
, 1.06 × 10
140
u
66
4.58 × 10
138
u
65
+ · · · + 7.94 × 10
140
a + 2.63 ×
10
142
, u
67
+ u
66
+ · · · + 384u + 256i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
5
=
u
u
3
+ u
a
11
=
0.133372u
66
+ 0.00576112u
65
+ ··· 11.7330u 33.1212
0.0938796u
66
0.0217203u
65
+ ··· 6.32205u 26.5053
a
6
=
0.209669u
66
+ 0.0230614u
65
+ ··· + 21.6013u + 63.8657
0.0241755u
66
+ 0.0237769u
65
+ ··· 9.20588u 1.31583
a
3
=
0.142701u
66
0.0190334u
65
+ ··· 17.1447u 45.4624
0.0396775u
66
0.0112029u
65
+ ··· 1.07906u 14.6917
a
2
=
0.111576u
66
+ 0.000157764u
65
+ ··· 14.6284u 30.1716
0.0827762u
66
0.0101687u
65
+ ··· 6.98086u 26.9277
a
1
=
0.185494u
66
0.0468383u
65
+ ··· 12.3954u 62.5498
0.120165u
66
0.00728459u
65
+ ··· 14.9632u 36.8117
a
10
=
0.227252u
66
0.0159592u
65
+ ··· 18.0550u 59.6265
0.0938796u
66
0.0217203u
65
+ ··· 6.32205u 26.5053
a
12
=
0.280258u
66
0.0158075u
65
+ ··· 25.1937u 78.0193
0.194157u
66
0.0107796u
65
+ ··· 23.6385u 52.3816
a
9
=
0.0947524u
66
0.0190567u
65
+ ··· 3.59061u 27.7303
0.0296424u
66
0.00314345u
65
+ ··· 7.50843u 12.6063
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.257514u
66
+ 0.0210201u
65
+ ··· 47.1768u 88.2413
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
67
+ 35u
66
+ ··· 6u 1
c
2
, c
5
u
67
+ 5u
66
+ ··· + 4u + 1
c
3
u
67
5u
66
+ ··· 4396u + 833
c
4
, c
7
u
67
+ u
66
+ ··· + 384u + 256
c
6
, c
10
u
67
+ 3u
66
+ ··· + 3u
2
+ 1
c
8
, c
9
, c
11
c
12
u
67
13u
66
+ ··· 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
67
y
66
+ ··· + 26y 1
c
2
, c
5
y
67
+ 35y
66
+ ··· 6y 1
c
3
y
67
37y
66
+ ··· 10001782y 693889
c
4
, c
7
y
67
45y
66
+ ··· + 770048y 65536
c
6
, c
10
y
67
+ 13y
66
+ ··· 6y 1
c
8
, c
9
, c
11
c
12
y
67
+ 85y
66
+ ··· 214y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.056677 + 1.011830I
a = 0.252444 + 1.241020I
b = 0.625082 0.683742I
2.90819 + 1.25830I 6.22598 0.52297I
u = 0.056677 1.011830I
a = 0.252444 1.241020I
b = 0.625082 + 0.683742I
2.90819 1.25830I 6.22598 + 0.52297I
u = 0.906722 + 0.307406I
a = 0.59144 + 2.02468I
b = 0.162929 0.884018I
1.04581 2.21513I 3.46945 + 4.65316I
u = 0.906722 0.307406I
a = 0.59144 2.02468I
b = 0.162929 + 0.884018I
1.04581 + 2.21513I 3.46945 4.65316I
u = 0.259205 + 1.013680I
a = 0.20161 + 1.64344I
b = 0.585248 0.823431I
2.45553 5.81631I 4.24111 + 7.61398I
u = 0.259205 1.013680I
a = 0.20161 1.64344I
b = 0.585248 + 0.823431I
2.45553 + 5.81631I 4.24111 7.61398I
u = 1.05818
a = 0.130055
b = 0.564378
1.77256 5.82730
u = 0.024549 + 1.103900I
a = 0.011764 + 1.076850I
b = 0.892018 0.929882I
8.60500 + 3.29350I 0
u = 0.024549 1.103900I
a = 0.011764 1.076850I
b = 0.892018 + 0.929882I
8.60500 3.29350I 0
u = 0.850621 + 0.246223I
a = 2.15946 0.58175I
b = 0.531404 + 0.791131I
0.45674 4.58253I 3.79920 + 9.11658I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.850621 0.246223I
a = 2.15946 + 0.58175I
b = 0.531404 0.791131I
0.45674 + 4.58253I 3.79920 9.11658I
u = 1.117870 + 0.087817I
a = 0.34576 + 1.97594I
b = 0.269852 0.943591I
2.13038 + 1.08941I 0
u = 1.117870 0.087817I
a = 0.34576 1.97594I
b = 0.269852 + 0.943591I
2.13038 1.08941I 0
u = 1.168910 + 0.077988I
a = 1.115420 0.446467I
b = 0.898793 0.925547I
9.32041 0.45884I 0
u = 1.168910 0.077988I
a = 1.115420 + 0.446467I
b = 0.898793 + 0.925547I
9.32041 + 0.45884I 0
u = 1.169990 + 0.122396I
a = 1.54997 + 0.03674I
b = 0.893032 0.937574I
9.28166 6.15285I 0
u = 1.169990 0.122396I
a = 1.54997 0.03674I
b = 0.893032 + 0.937574I
9.28166 + 6.15285I 0
u = 0.801751 + 0.037628I
a = 1.81454 0.67480I
b = 0.533091 0.711518I
0.726291 0.492318I 6.66330 1.23227I
u = 0.801751 0.037628I
a = 1.81454 + 0.67480I
b = 0.533091 + 0.711518I
0.726291 + 0.492318I 6.66330 + 1.23227I
u = 0.565014 + 0.542577I
a = 1.22383 + 2.12227I
b = 0.010154 0.774344I
2.09008 1.39139I 6.88883 + 3.94894I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.565014 0.542577I
a = 1.22383 2.12227I
b = 0.010154 + 0.774344I
2.09008 + 1.39139I 6.88883 3.94894I
u = 1.166070 + 0.351089I
a = 0.46834 2.13436I
b = 0.162727 + 0.958944I
1.53806 + 6.56529I 0
u = 1.166070 0.351089I
a = 0.46834 + 2.13436I
b = 0.162727 0.958944I
1.53806 6.56529I 0
u = 0.209708 + 0.728648I
a = 0.02695 1.51557I
b = 0.495464 + 0.766624I
0.11293 + 1.90039I 0.16873 4.13136I
u = 0.209708 0.728648I
a = 0.02695 + 1.51557I
b = 0.495464 0.766624I
0.11293 1.90039I 0.16873 + 4.13136I
u = 0.464969 + 0.565453I
a = 0.299278 0.865709I
b = 0.434046 + 0.466211I
0.85344 + 1.32721I 6.30018 4.02616I
u = 0.464969 0.565453I
a = 0.299278 + 0.865709I
b = 0.434046 0.466211I
0.85344 1.32721I 6.30018 + 4.02616I
u = 1.191720 + 0.459562I
a = 1.14460 1.50739I
b = 0.580446 + 0.918238I
3.08979 6.51525I 0
u = 1.191720 0.459562I
a = 1.14460 + 1.50739I
b = 0.580446 0.918238I
3.08979 + 6.51525I 0
u = 1.240190 + 0.334781I
a = 0.053213 + 0.132726I
b = 0.717680 + 0.579006I
4.20067 + 1.70229I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.240190 0.334781I
a = 0.053213 0.132726I
b = 0.717680 0.579006I
4.20067 1.70229I 0
u = 0.601061 + 0.371818I
a = 0.128143 + 0.972761I
b = 0.851577 0.886506I
7.28010 + 1.81664I 8.55201 4.80888I
u = 0.601061 0.371818I
a = 0.128143 0.972761I
b = 0.851577 + 0.886506I
7.28010 1.81664I 8.55201 + 4.80888I
u = 1.281160 + 0.200682I
a = 0.0251805 + 0.1116100I
b = 0.659788 0.071314I
4.97897 4.12056I 0
u = 1.281160 0.200682I
a = 0.0251805 0.1116100I
b = 0.659788 + 0.071314I
4.97897 + 4.12056I 0
u = 1.280000 + 0.267333I
a = 0.84169 + 1.26843I
b = 0.647196 0.914761I
7.47404 + 3.11915I 0
u = 1.280000 0.267333I
a = 0.84169 1.26843I
b = 0.647196 + 0.914761I
7.47404 3.11915I 0
u = 0.565494 + 0.375805I
a = 0.148591 + 1.093030I
b = 0.839438 0.928418I
7.15245 + 4.47005I 7.71055 + 0.32064I
u = 0.565494 0.375805I
a = 0.148591 1.093030I
b = 0.839438 + 0.928418I
7.15245 4.47005I 7.71055 0.32064I
u = 0.394937 + 0.543945I
a = 2.11231 2.23101I
b = 0.104773 + 0.712271I
0.99271 2.93977I 4.97131 + 1.61882I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.394937 0.543945I
a = 2.11231 + 2.23101I
b = 0.104773 0.712271I
0.99271 + 2.93977I 4.97131 1.61882I
u = 0.183363 + 1.320840I
a = 0.033195 1.055920I
b = 0.911335 + 0.923319I
11.93250 + 0.86287I 0
u = 0.183363 1.320840I
a = 0.033195 + 1.055920I
b = 0.911335 0.923319I
11.93250 0.86287I 0
u = 0.222777 + 1.317480I
a = 0.010363 1.118770I
b = 0.898644 + 0.948171I
11.85170 7.53264I 0
u = 0.222777 1.317480I
a = 0.010363 + 1.118770I
b = 0.898644 0.948171I
11.85170 + 7.53264I 0
u = 0.508545 + 0.407974I
a = 0.23707 1.67495I
b = 0.386976 + 0.820574I
0.19428 + 1.92540I 0.71393 3.09643I
u = 0.508545 0.407974I
a = 0.23707 + 1.67495I
b = 0.386976 0.820574I
0.19428 1.92540I 0.71393 + 3.09643I
u = 1.375410 + 0.137221I
a = 0.136625 + 0.141678I
b = 0.765167 0.641306I
8.37009 + 2.07396I 0
u = 1.375410 0.137221I
a = 0.136625 0.141678I
b = 0.765167 + 0.641306I
8.37009 2.07396I 0
u = 1.297480 + 0.545966I
a = 0.99218 + 1.66578I
b = 0.578591 0.954312I
5.83001 + 11.50930I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.297480 0.545966I
a = 0.99218 1.66578I
b = 0.578591 + 0.954312I
5.83001 11.50930I 0
u = 1.36159 + 0.46010I
a = 0.1117340 0.0569109I
b = 0.759058 0.543606I
7.18404 6.58171I 0
u = 1.36159 0.46010I
a = 0.1117340 + 0.0569109I
b = 0.759058 + 0.543606I
7.18404 + 6.58171I 0
u = 0.226790 + 0.512847I
a = 1.193550 + 0.040521I
b = 0.239619 + 0.182955I
0.33336 + 1.65382I 2.71310 4.65579I
u = 0.226790 0.512847I
a = 1.193550 0.040521I
b = 0.239619 0.182955I
0.33336 1.65382I 2.71310 + 4.65579I
u = 1.38489 + 0.55760I
a = 1.17727 + 1.10112I
b = 0.891489 0.970679I
12.8397 9.2457I 0
u = 1.38489 0.55760I
a = 1.17727 1.10112I
b = 0.891489 + 0.970679I
12.8397 + 9.2457I 0
u = 1.39960 + 0.53092I
a = 0.017508 0.147534I
b = 0.927330 0.902590I
13.06210 + 2.54998I 0
u = 1.39960 0.53092I
a = 0.017508 + 0.147534I
b = 0.927330 + 0.902590I
13.06210 2.54998I 0
u = 1.42700 + 0.68349I
a = 1.05188 1.26038I
b = 0.889746 + 0.979952I
15.7150 + 14.6442I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42700 0.68349I
a = 1.05188 + 1.26038I
b = 0.889746 0.979952I
15.7150 14.6442I 0
u = 1.44635 + 0.66308I
a = 0.138752 + 0.035309I
b = 0.935151 + 0.894911I
15.9934 7.9304I 0
u = 1.44635 0.66308I
a = 0.138752 0.035309I
b = 0.935151 0.894911I
15.9934 + 7.9304I 0
u = 1.55039 + 0.42301I
a = 0.949405 0.872633I
b = 0.906199 + 0.967999I
17.8393 + 5.4177I 0
u = 1.55039 0.42301I
a = 0.949405 + 0.872633I
b = 0.906199 0.967999I
17.8393 5.4177I 0
u = 1.56628 + 0.38972I
a = 0.218508 0.080153I
b = 0.933842 + 0.917694I
18.0048 + 1.3484I 0
u = 1.56628 0.38972I
a = 0.218508 + 0.080153I
b = 0.933842 0.917694I
18.0048 1.3484I 0
11
II.
I
v
1
= ha, 18v
7
26v
6
+· · · + 19b 2, v
8
2v
7
+v
6
4v
5
+6v
4
+v
3
2v
2
v +1i
(i) Arc colorings
a
4
=
v
0
a
7
=
1
0
a
8
=
1
0
a
5
=
v
0
a
11
=
0
0.947368v
7
+ 1.36842v
6
+ ··· 0.315789v + 0.105263
a
6
=
1
1.26316v
7
+ 2.15789v
6
+ ··· 0.421053v + 1.47368
a
3
=
0.368421v
7
0.421053v
6
+ ··· + 0.789474v 1.26316
0.263158v
7
0.157895v
6
+ ··· + 2.42105v 0.473684
a
2
=
0.0526316v
7
+ 0.368421v
6
+ ··· + 0.684211v 0.894737
0.263158v
7
0.157895v
6
+ ··· + 2.42105v 0.473684
a
1
=
1
1.26316v
7
2.15789v
6
+ ··· + 0.421053v 1.47368
a
10
=
0.947368v
7
+ 1.36842v
6
+ ··· 0.315789v + 0.105263
0.947368v
7
+ 1.36842v
6
+ ··· 0.315789v + 0.105263
a
12
=
0.789474v
7
+ 1.47368v
6
+ ··· 0.263158v + 2.42105
1.73684v
7
+ 2.84211v
6
+ ··· 0.578947v + 2.52632
a
9
=
1.26316v
7
2.15789v
6
+ ··· + 0.421053v 0.473684
0.473684v
7
0.684211v
6
+ ··· + 0.157895v + 1.94737
(ii) Obstruction class = 1
(iii) Cusp Shapes =
23
19
v
7
9
19
v
6
+
67
19
v
5
+
49
19
v
4
+
94
19
v
3
298
19
v
2
+
43
19
v +
11
19
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
(u
2
u + 1)
4
c
2
(u
2
+ u + 1)
4
c
4
, c
7
u
8
c
6
(u
4
+ u
3
+ u
2
+ 1)
2
c
8
, c
9
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
c
10
(u
4
u
3
+ u
2
+ 1)
2
c
11
, c
12
(u
4
u
3
+ 3u
2
2u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
(y
2
+ y + 1)
4
c
4
, c
7
y
8
c
6
, c
10
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
8
, c
9
, c
11
c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.576953 + 0.283088I
a = 0
b = 0.851808 0.911292I
6.79074 1.13408I 2.09237 2.48762I
v = 0.576953 0.283088I
a = 0
b = 0.851808 + 0.911292I
6.79074 + 1.13408I 2.09237 + 2.48762I
v = 0.533637 + 0.358112I
a = 0
b = 0.851808 0.911292I
6.79074 5.19385I 2.75261 + 7.88731I
v = 0.533637 0.358112I
a = 0
b = 0.851808 + 0.911292I
6.79074 + 5.19385I 2.75261 7.88731I
v = 1.54112 + 0.21492I
a = 0
b = 0.351808 0.720342I
0.211005 0.614778I 2.55284 0.89520I
v = 1.54112 0.21492I
a = 0
b = 0.351808 + 0.720342I
0.211005 + 0.614778I 2.55284 + 0.89520I
v = 0.58443 + 1.44211I
a = 0
b = 0.351808 + 0.720342I
0.21101 3.44499I 2.20786 + 6.97475I
v = 0.58443 1.44211I
a = 0
b = 0.351808 0.720342I
0.21101 + 3.44499I 2.20786 6.97475I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
67
+ 35u
66
+ ··· 6u 1)
c
2
((u
2
+ u + 1)
4
)(u
67
+ 5u
66
+ ··· + 4u + 1)
c
3
((u
2
u + 1)
4
)(u
67
5u
66
+ ··· 4396u + 833)
c
4
, c
7
u
8
(u
67
+ u
66
+ ··· + 384u + 256)
c
5
((u
2
u + 1)
4
)(u
67
+ 5u
66
+ ··· + 4u + 1)
c
6
((u
4
+ u
3
+ u
2
+ 1)
2
)(u
67
+ 3u
66
+ ··· + 3u
2
+ 1)
c
8
, c
9
((u
4
+ u
3
+ 3u
2
+ 2u + 1)
2
)(u
67
13u
66
+ ··· 6u + 1)
c
10
((u
4
u
3
+ u
2
+ 1)
2
)(u
67
+ 3u
66
+ ··· + 3u
2
+ 1)
c
11
, c
12
((u
4
u
3
+ 3u
2
2u + 1)
2
)(u
67
13u
66
+ ··· 6u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
67
y
66
+ ··· + 26y 1)
c
2
, c
5
((y
2
+ y + 1)
4
)(y
67
+ 35y
66
+ ··· 6y 1)
c
3
((y
2
+ y + 1)
4
)(y
67
37y
66
+ ··· 1.00018 × 10
7
y 693889)
c
4
, c
7
y
8
(y
67
45y
66
+ ··· + 770048y 65536)
c
6
, c
10
((y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
)(y
67
+ 13y
66
+ ··· 6y 1)
c
8
, c
9
, c
11
c
12
((y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
2
)(y
67
+ 85y
66
+ ··· 214y 1)
17