12a
0025
(K12a
0025
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 11 12 10 4 8 1 7
Solving Sequence
7,12
8
1,3
2 11 6 4 5 10 9
c
7
c
12
c
1
c
11
c
6
c
3
c
5
c
10
c
9
c
2
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
19
u
18
+ ··· u
2
+ b, u
19
u
18
+ ··· + a u, u
22
u
21
+ ··· u + 1i
I
u
2
= hu
73
3u
72
+ ··· + b 2, 2u
72
30u
70
+ ··· + a u, u
74
2u
73
+ ··· 3u + 1i
I
u
3
= hb + u + 2, a + 2, u
2
+ u + 1i
I
u
4
= hb 2u 1, a 2u 2, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 100 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
19
u
18
+ · · · u
2
+ b, u
19
u
18
+ · · · + a u, u
22
u
21
+ · · · u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
a
3
=
u
19
+ u
18
+ ··· + u
2
+ u
u
19
+ u
18
+ ··· 2u
3
+ u
2
a
2
=
u
21
u
20
+ ··· u
3
+ u
u
21
u
20
+ ··· u
4
+ u
a
11
=
u
3
u
3
+ u
a
6
=
u
6
u
4
+ 1
u
6
2u
4
u
2
a
4
=
u
19
+ u
18
+ ··· 3u
3
+ u
2
u
19
+ u
18
+ ··· u
3
+ u
2
a
5
=
u
20
+ u
19
+ ··· u
2
+ u
u
20
+ u
19
+ ··· + u 1
a
10
=
u
5
+ 2u
3
+ u
u
7
u
5
+ u
a
9
=
u
10
+ 3u
8
+ 4u
6
+ 3u
4
+ u
2
+ 1
u
12
2u
10
2u
8
+ u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
21
8u
20
+ 26u
19
42u
18
+ 82u
17
116u
16
+ 164u
15
198u
14
+ 226u
13
232u
12
+
234u
11
206u
10
+ 198u
9
168u
8
+ 152u
7
132u
6
+ 100u
5
72u
4
+ 50u
3
18u
2
+ 14u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
22
+ 11u
21
+ ··· + 3u + 1
c
2
, c
5
, c
7
c
12
u
22
+ u
21
+ ··· + u + 1
c
3
, c
6
u
22
u
21
+ ··· 3u + 1
c
4
, c
9
u
22
+ 5u
21
+ ··· + 8u + 4
c
8
, c
10
u
22
+ 5u
21
+ ··· + 56u
2
+ 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
22
+ 3y
21
+ ··· + 11y + 1
c
2
, c
5
, c
7
c
12
y
22
+ 11y
21
+ ··· + 3y + 1
c
3
, c
6
y
22
5y
21
+ ··· 13y + 1
c
4
, c
9
y
22
+ 5y
21
+ ··· + 56y
2
+ 16
c
8
, c
10
y
22
+ 17y
21
+ ··· + 1792y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.267420 + 0.934374I
a = 0.866808 + 0.905520I
b = 1.134230 0.028854I
2.03960 2.30169I 5.11682 + 3.55862I
u = 0.267420 0.934374I
a = 0.866808 0.905520I
b = 1.134230 + 0.028854I
2.03960 + 2.30169I 5.11682 3.55862I
u = 0.803411 + 0.448160I
a = 1.64165 0.62510I
b = 0.838235 1.073260I
6.81231 6.24031I 5.35592 + 2.94857I
u = 0.803411 0.448160I
a = 1.64165 + 0.62510I
b = 0.838235 + 1.073260I
6.81231 + 6.24031I 5.35592 2.94857I
u = 0.773574 + 0.483952I
a = 1.84656 0.54883I
b = 1.07298 1.03278I
7.30323 0.05327I 6.29197 + 2.01808I
u = 0.773574 0.483952I
a = 1.84656 + 0.54883I
b = 1.07298 + 1.03278I
7.30323 + 0.05327I 6.29197 2.01808I
u = 0.125921 + 1.085150I
a = 0.002278 + 0.829637I
b = 0.123644 0.255513I
3.59209 2.19399I 7.43206 + 2.16700I
u = 0.125921 1.085150I
a = 0.002278 0.829637I
b = 0.123644 + 0.255513I
3.59209 + 2.19399I 7.43206 2.16700I
u = 0.469571 + 1.049440I
a = 0.16005 2.27593I
b = 0.30952 3.32537I
2.42559 6.55386I 3.45447 + 8.04873I
u = 0.469571 1.049440I
a = 0.16005 + 2.27593I
b = 0.30952 + 3.32537I
2.42559 + 6.55386I 3.45447 8.04873I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.361702 + 1.107050I
a = 0.209067 0.490062I
b = 0.15263 1.59711I
7.56344 + 3.87204I 10.26851 4.35879I
u = 0.361702 1.107050I
a = 0.209067 + 0.490062I
b = 0.15263 + 1.59711I
7.56344 3.87204I 10.26851 + 4.35879I
u = 0.510802 + 1.115330I
a = 1.37025 1.89407I
b = 0.85945 3.00940I
5.48268 + 11.20780I 5.92791 10.64614I
u = 0.510802 1.115330I
a = 1.37025 + 1.89407I
b = 0.85945 + 3.00940I
5.48268 11.20780I 5.92791 + 10.64614I
u = 0.611674 + 1.083050I
a = 2.45227 2.64694I
b = 1.84060 3.72999I
3.70474 10.43210I 0.79280 + 7.46958I
u = 0.611674 1.083050I
a = 2.45227 + 2.64694I
b = 1.84060 + 3.72999I
3.70474 + 10.43210I 0.79280 7.46958I
u = 0.620139 + 1.106350I
a = 2.54875 2.41058I
b = 1.92861 3.51693I
2.8718 + 16.9388I 0.30393 11.38128I
u = 0.620139 1.106350I
a = 2.54875 + 2.41058I
b = 1.92861 + 3.51693I
2.8718 16.9388I 0.30393 + 11.38128I
u = 0.619109 + 0.241097I
a = 1.096950 + 0.038223I
b = 0.477839 0.202874I
0.59135 2.31883I 1.12676 + 3.72876I
u = 0.619109 0.241097I
a = 1.096950 0.038223I
b = 0.477839 + 0.202874I
0.59135 + 2.31883I 1.12676 3.72876I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.418845 + 0.499289I
a = 1.27687 + 1.05838I
b = 0.858029 + 0.559094I
1.00269 1.14066I 4.93625 + 3.17573I
u = 0.418845 0.499289I
a = 1.27687 1.05838I
b = 0.858029 0.559094I
1.00269 + 1.14066I 4.93625 3.17573I
7
II.
I
u
2
= hu
73
3u
72
+· · ·+b2, 2u
72
30u
70
+· · ·+au, u
74
2u
73
+· · ·3u+1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u
2
a
1
=
u
u
a
3
=
2u
72
+ 30u
70
+ ··· + 2u
2
+ u
u
73
+ 3u
72
+ ··· 2u + 2
a
2
=
2u
72
2u
71
+ ··· 6u + 3
u
73
+ 3u
72
+ ··· 5u + 2
a
11
=
u
3
u
3
+ u
a
6
=
u
6
u
4
+ 1
u
6
2u
4
u
2
a
4
=
2u
73
+ 3u
72
+ ··· u 1
u
73
13u
71
+ ··· + 3u 1
a
5
=
u
72
u
71
+ ··· u + 1
u
73
2u
72
+ ··· + u 1
a
10
=
u
5
+ 2u
3
+ u
u
7
u
5
+ u
a
9
=
u
10
+ 3u
8
+ 4u
6
+ 3u
4
+ u
2
+ 1
u
12
2u
10
2u
8
+ u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
73
+ 8u
72
+ ··· 7u + 7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
74
+ 32u
73
+ ··· + 5u + 1
c
2
, c
5
, c
7
c
12
u
74
+ 2u
73
+ ··· + 3u + 1
c
3
, c
6
u
74
2u
73
+ ··· 3u + 1
c
4
, c
9
(u
37
2u
36
+ ··· u 2)
2
c
8
, c
10
(u
37
+ 10u
36
+ ··· 39u 4)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
74
+ 20y
73
+ ··· + 37y + 1
c
2
, c
5
, c
7
c
12
y
74
+ 32y
73
+ ··· + 5y + 1
c
3
, c
6
y
74
+ 8y
73
+ ··· + 101y + 1
c
4
, c
9
(y
37
+ 10y
36
+ ··· 39y 4)
2
c
8
, c
10
(y
37
+ 34y
36
+ ··· 159y 16)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.639479 + 0.752607I
a = 2.15983 + 0.09363I
b = 1.93455 1.15641I
0.61107 5.41655I 0. + 9.62417I
u = 0.639479 0.752607I
a = 2.15983 0.09363I
b = 1.93455 + 1.15641I
0.61107 + 5.41655I 0. 9.62417I
u = 0.784429 + 0.545941I
a = 2.03595 0.33437I
b = 1.91239 1.94292I
5.47701 8.31264I 3.19623 + 7.51099I
u = 0.784429 0.545941I
a = 2.03595 + 0.33437I
b = 1.91239 + 1.94292I
5.47701 + 8.31264I 3.19623 7.51099I
u = 0.047209 + 1.049760I
a = 2.14571 0.35342I
b = 0.925538 1.003280I
0.33366 + 3.54390I 0
u = 0.047209 1.049760I
a = 2.14571 + 0.35342I
b = 0.925538 + 1.003280I
0.33366 3.54390I 0
u = 0.779819 + 0.528531I
a = 0.740110 + 0.451946I
b = 0.62798 + 1.32561I
7.26569 3.05590I 6.03502 + 2.77359I
u = 0.779819 0.528531I
a = 0.740110 0.451946I
b = 0.62798 1.32561I
7.26569 + 3.05590I 6.03502 2.77359I
u = 0.009056 + 1.063140I
a = 1.19514 + 0.78248I
b = 0.491540 + 1.031220I
1.91033 1.51255I 0
u = 0.009056 1.063140I
a = 1.19514 0.78248I
b = 0.491540 1.031220I
1.91033 + 1.51255I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.622852 + 0.865244I
a = 0.79438 + 2.08172I
b = 0.29643 + 1.96964I
0.936846 + 0.485539I 0
u = 0.622852 0.865244I
a = 0.79438 2.08172I
b = 0.29643 1.96964I
0.936846 0.485539I 0
u = 0.813660 + 0.438643I
a = 2.38959 + 1.49627I
b = 0.90547 + 2.36932I
4.86825 11.57530I 2.50814 + 7.25667I
u = 0.813660 0.438643I
a = 2.38959 1.49627I
b = 0.90547 2.36932I
4.86825 + 11.57530I 2.50814 7.25667I
u = 0.443091 + 0.986263I
a = 1.38423 + 1.70607I
b = 0.33820 + 1.81029I
0.936846 + 0.485539I 0
u = 0.443091 0.986263I
a = 1.38423 1.70607I
b = 0.33820 1.81029I
0.936846 0.485539I 0
u = 0.775921 + 0.477218I
a = 0.740766 + 0.505518I
b = 0.57413 + 1.46540I
7.26569 3.05590I 6.03502 + 2.77359I
u = 0.775921 0.477218I
a = 0.740766 0.505518I
b = 0.57413 1.46540I
7.26569 + 3.05590I 6.03502 2.77359I
u = 0.762103 + 0.491833I
a = 1.87904 0.32585I
b = 1.73107 1.98585I
5.70204 + 2.27936I 3.88815 2.05007I
u = 0.762103 0.491833I
a = 1.87904 + 0.32585I
b = 1.73107 + 1.98585I
5.70204 2.27936I 3.88815 + 2.05007I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.773218 + 0.464058I
a = 2.65308 + 1.45047I
b = 1.16242 + 2.27131I
5.54616 + 5.20107I 3.66602 2.81386I
u = 0.773218 0.464058I
a = 2.65308 1.45047I
b = 1.16242 2.27131I
5.54616 5.20107I 3.66602 + 2.81386I
u = 0.395925 + 1.024370I
a = 0.444820 1.150880I
b = 1.42676 1.64270I
2.95124 0
u = 0.395925 1.024370I
a = 0.444820 + 1.150880I
b = 1.42676 + 1.64270I
2.95124 0
u = 0.480742 + 0.988204I
a = 0.418583 + 1.307900I
b = 0.50569 + 1.47970I
0.32230 2.77484I 0
u = 0.480742 0.988204I
a = 0.418583 1.307900I
b = 0.50569 1.47970I
0.32230 + 2.77484I 0
u = 0.569891 + 0.939876I
a = 1.55469 + 0.28140I
b = 1.41271 0.18656I
0.15880 2.93389I 0
u = 0.569891 0.939876I
a = 1.55469 0.28140I
b = 1.41271 + 0.18656I
0.15880 + 2.93389I 0
u = 0.725089 + 0.517371I
a = 0.05378 + 1.70419I
b = 1.09918 + 0.98483I
1.91033 1.51255I 0. + 2.66920I
u = 0.725089 0.517371I
a = 0.05378 1.70419I
b = 1.09918 0.98483I
1.91033 + 1.51255I 0. 2.66920I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.324310 + 1.067530I
a = 0.368103 + 0.746898I
b = 0.134333 + 1.055790I
4.13208 + 0.49053I 0
u = 0.324310 1.067530I
a = 0.368103 0.746898I
b = 0.134333 1.055790I
4.13208 0.49053I 0
u = 0.771853 + 0.430210I
a = 0.12391 + 1.52352I
b = 1.27111 + 0.67805I
1.41199 4.22774I 0.66777 + 2.80088I
u = 0.771853 0.430210I
a = 0.12391 1.52352I
b = 1.27111 0.67805I
1.41199 + 4.22774I 0.66777 2.80088I
u = 0.478382 + 1.012710I
a = 1.86046 0.41541I
b = 1.14344 0.90963I
0.61107 + 5.41655I 0
u = 0.478382 1.012710I
a = 1.86046 + 0.41541I
b = 1.14344 + 0.90963I
0.61107 5.41655I 0
u = 0.071006 + 1.119930I
a = 1.061640 + 0.567159I
b = 0.447863 + 0.894942I
1.41199 4.22774I 0
u = 0.071006 1.119930I
a = 1.061640 0.567159I
b = 0.447863 0.894942I
1.41199 + 4.22774I 0
u = 0.552065 + 0.679047I
a = 0.318468 + 0.837668I
b = 0.026831 + 1.040650I
0.94543 1.58284I 3.46208 + 5.25506I
u = 0.552065 0.679047I
a = 0.318468 0.837668I
b = 0.026831 1.040650I
0.94543 + 1.58284I 3.46208 5.25506I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.083389 + 1.139640I
a = 2.01039 0.09832I
b = 0.804300 0.746868I
0.56297 9.41729I 0
u = 0.083389 1.139640I
a = 2.01039 + 0.09832I
b = 0.804300 + 0.746868I
0.56297 + 9.41729I 0
u = 0.297227 + 1.107630I
a = 0.797728 0.282670I
b = 0.300506 0.901521I
6.88031 3.64383I 0
u = 0.297227 1.107630I
a = 0.797728 + 0.282670I
b = 0.300506 + 0.901521I
6.88031 + 3.64383I 0
u = 0.501716 + 1.091230I
a = 0.270062 + 1.221430I
b = 0.17916 + 1.65956I
2.94967 + 6.65921I 0
u = 0.501716 1.091230I
a = 0.270062 1.221430I
b = 0.17916 1.65956I
2.94967 6.65921I 0
u = 0.465718 + 1.108500I
a = 0.766414 + 0.253446I
b = 1.63805 0.40742I
6.88031 + 3.64383I 0
u = 0.465718 1.108500I
a = 0.766414 0.253446I
b = 1.63805 + 0.40742I
6.88031 3.64383I 0
u = 0.597031 + 1.047020I
a = 1.74633 + 0.73819I
b = 2.26975 0.01372I
0.33366 3.54390I 0
u = 0.597031 1.047020I
a = 1.74633 0.73819I
b = 2.26975 + 0.01372I
0.33366 + 3.54390I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.644880 + 1.043780I
a = 1.37188 + 2.45763I
b = 0.13735 + 2.49129I
3.99070 + 2.93314I 0
u = 0.644880 1.043780I
a = 1.37188 2.45763I
b = 0.13735 2.49129I
3.99070 2.93314I 0
u = 0.635594 + 1.052450I
a = 1.140050 0.824434I
b = 0.475615 0.903685I
5.70204 2.27936I 0
u = 0.635594 1.052450I
a = 1.140050 + 0.824434I
b = 0.475615 + 0.903685I
5.70204 + 2.27936I 0
u = 0.614101 + 1.066830I
a = 1.50588 + 2.36698I
b = 0.28505 + 2.43832I
3.99070 + 2.93314I 0
u = 0.614101 1.066830I
a = 1.50588 2.36698I
b = 0.28505 2.43832I
3.99070 2.93314I 0
u = 0.617616 + 1.073840I
a = 1.01978 + 1.95064I
b = 0.67156 + 2.50713I
5.54616 5.20107I 0
u = 0.617616 1.073840I
a = 1.01978 1.95064I
b = 0.67156 2.50713I
5.54616 + 5.20107I 0
u = 0.616680 + 1.077750I
a = 1.30539 0.90429I
b = 0.579788 1.025090I
5.47701 + 8.31264I 0
u = 0.616680 1.077750I
a = 1.30539 + 0.90429I
b = 0.579788 + 1.025090I
5.47701 8.31264I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.602127 + 1.096470I
a = 1.58976 + 0.92372I
b = 2.22003 + 0.09167I
0.56297 + 9.41729I 0
u = 0.602127 1.096470I
a = 1.58976 0.92372I
b = 2.22003 0.09167I
0.56297 9.41729I 0
u = 0.619282 + 1.099150I
a = 1.12877 + 1.73008I
b = 0.81856 + 2.33214I
4.86825 + 11.57530I 0
u = 0.619282 1.099150I
a = 1.12877 1.73008I
b = 0.81856 2.33214I
4.86825 11.57530I 0
u = 0.298836 + 0.669488I
a = 2.36525 + 0.12741I
b = 1.34154 1.16389I
0.15880 + 2.93389I 0.1334486 + 0.0017874I
u = 0.298836 0.669488I
a = 2.36525 0.12741I
b = 1.34154 + 1.16389I
0.15880 2.93389I 0.1334486 0.0017874I
u = 0.696387 + 0.229050I
a = 2.03826 + 0.21361I
b = 0.354754 + 1.232240I
2.94967 6.65921I 2.58619 + 7.25641I
u = 0.696387 0.229050I
a = 2.03826 0.21361I
b = 0.354754 1.232240I
2.94967 + 6.65921I 2.58619 7.25641I
u = 0.647209 + 0.115404I
a = 0.845624 + 1.132210I
b = 0.518554 0.180895I
4.13208 + 0.49053I 5.63239 0.25281I
u = 0.647209 0.115404I
a = 0.845624 1.132210I
b = 0.518554 + 0.180895I
4.13208 0.49053I 5.63239 + 0.25281I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.385834 + 0.449069I
a = 1.135030 + 0.682969I
b = 0.002429 + 1.307960I
0.94543 1.58284I 3.46208 + 5.25506I
u = 0.385834 0.449069I
a = 1.135030 0.682969I
b = 0.002429 1.307960I
0.94543 + 1.58284I 3.46208 5.25506I
u = 0.412050 + 0.204676I
a = 3.13214 0.97399I
b = 0.762365 + 0.154767I
0.32230 + 2.77484I 2.03391 3.58176I
u = 0.412050 0.204676I
a = 3.13214 + 0.97399I
b = 0.762365 0.154767I
0.32230 2.77484I 2.03391 + 3.58176I
18
III. I
u
3
= hb + u + 2, a + 2, u
2
+ u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u + 1
a
1
=
u
u
a
3
=
2
u 2
a
2
=
u 2
u 1
a
11
=
1
u + 1
a
6
=
u
u
a
4
=
1
u 1
a
5
=
1
u 1
a
10
=
1
u + 1
a
9
=
1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
11
, c
12
u
2
u + 1
c
2
, c
7
u
2
+ u + 1
c
4
, c
8
, c
9
c
10
u
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
11
, c
12
y
2
+ y + 1
c
4
, c
8
, c
9
c
10
y
2
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 2.00000
b = 1.50000 0.86603I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 2.00000
b = 1.50000 + 0.86603I
4.05977I 0. 6.92820I
22
IV. I
u
4
= hb 2u 1, a 2u 2, u
2
+ u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
8
=
1
u + 1
a
1
=
u
u
a
3
=
2u + 2
2u + 1
a
2
=
u + 2
2u + 2
a
11
=
1
u + 1
a
6
=
u
u
a
4
=
u + 1
u
a
5
=
u + 1
u
a
10
=
1
u + 1
a
9
=
1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
11
, c
12
u
2
u + 1
c
2
, c
7
u
2
+ u + 1
c
4
, c
8
, c
9
c
10
u
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
11
, c
12
y
2
+ y + 1
c
4
, c
8
, c
9
c
10
y
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000 + 1.73205I
b = 1.73205I
0 3.00000
u = 0.500000 0.866025I
a = 1.00000 1.73205I
b = 1.73205I
0 3.00000
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u
2
u + 1)
2
)(u
22
+ 11u
21
+ ··· + 3u + 1)(u
74
+ 32u
73
+ ··· + 5u + 1)
c
2
, c
7
((u
2
+ u + 1)
2
)(u
22
+ u
21
+ ··· + u + 1)(u
74
+ 2u
73
+ ··· + 3u + 1)
c
3
, c
6
((u
2
u + 1)
2
)(u
22
u
21
+ ··· 3u + 1)(u
74
2u
73
+ ··· 3u + 1)
c
4
, c
9
u
4
(u
22
+ 5u
21
+ ··· + 8u + 4)(u
37
2u
36
+ ··· u 2)
2
c
5
, c
12
((u
2
u + 1)
2
)(u
22
+ u
21
+ ··· + u + 1)(u
74
+ 2u
73
+ ··· + 3u + 1)
c
8
, c
10
u
4
(u
22
+ 5u
21
+ ··· + 56u
2
+ 16)(u
37
+ 10u
36
+ ··· 39u 4)
2
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y
2
+ y + 1)
2
)(y
22
+ 3y
21
+ ··· + 11y + 1)(y
74
+ 20y
73
+ ··· + 37y + 1)
c
2
, c
5
, c
7
c
12
((y
2
+ y + 1)
2
)(y
22
+ 11y
21
+ ··· + 3y + 1)(y
74
+ 32y
73
+ ··· + 5y + 1)
c
3
, c
6
((y
2
+ y + 1)
2
)(y
22
5y
21
+ ··· 13y + 1)(y
74
+ 8y
73
+ ··· + 101y + 1)
c
4
, c
9
y
4
(y
22
+ 5y
21
+ ··· + 56y
2
+ 16)(y
37
+ 10y
36
+ ··· 39y 4)
2
c
8
, c
10
y
4
(y
22
+ 17y
21
+ ··· + 1792y + 256)
· (y
37
+ 34y
36
+ ··· 159y 16)
2
28