12a
0028
(K12a
0028
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 4 8 1 7 11
Solving Sequence
7,11
12
1,3
2 6 4 5 10 8 9
c
11
c
12
c
1
c
6
c
3
c
5
c
10
c
7
c
9
c
2
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
73
2u
72
+ ··· + b 1, u
75
+ 3u
74
+ ··· + 2a 1, u
76
3u
75
+ ··· 4u + 1i
I
u
2
= hb, a + u + 1, u
2
+ u + 1i
I
u
3
= hb, a 1, u
15
+ 3u
13
+ 6u
11
+ u
10
+ 7u
9
+ 2u
8
+ 6u
7
+ 3u
6
+ 5u
5
+ 2u
4
+ 3u
3
+ u
2
+ 2u + 1i
I
u
4
= hb, a 1, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
73
2u
72
+· · ·+b1, u
75
+3u
74
+· · ·+2a1, u
76
3u
75
+· · ·4u+1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
3
=
1
2
u
75
3
2
u
74
+ ··· + 4u +
1
2
u
73
+ 2u
72
+ ··· 3u + 1
a
2
=
1
2
u
75
+
3
2
u
74
+ ··· + 2u +
5
2
u
37
7u
35
+ ··· 4u
2
u
a
6
=
u
u
3
+ u
a
4
=
u
75
u
74
+ ··· + 2u + 1
3u
75
11
2
u
74
+ ··· +
5
2
u
1
2
a
5
=
u
75
+ 3u
74
+ ··· 8u + 1
1
2
u
74
+ u
73
+ ··· +
5
2
u
1
2
a
10
=
u
4
+ u
2
+ 1
u
4
a
8
=
u
9
2u
7
3u
5
2u
3
u
u
9
u
7
u
5
+ u
a
9
=
u
14
+ 3u
12
+ 6u
10
+ 7u
8
+ 6u
6
+ 4u
4
+ 2u
2
+ 1
u
14
+ 2u
12
+ 3u
10
+ 2u
8
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
11
2
u
75
19u
74
+ ··· +
27
2
u 7
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
76
+ 35u
75
+ ··· 12u
2
+ 1
c
2
, c
5
u
76
+ 3u
75
+ ··· + 2u + 1
c
3
u
76
3u
75
+ ··· 2u + 1
c
4
, c
8
u
76
+ 4u
75
+ ··· + 16u + 16
c
6
, c
11
u
76
3u
75
+ ··· 4u + 1
c
7
, c
9
u
76
+ 20u
75
+ ··· + 1152u + 256
c
10
, c
12
u
76
27u
75
+ ··· + 156u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
76
+ 15y
75
+ ··· 24y + 1
c
2
, c
5
y
76
+ 35y
75
+ ··· 12y
2
+ 1
c
3
y
76
5y
75
+ ··· 96y + 1
c
4
, c
8
y
76
20y
75
+ ··· 1152y + 256
c
6
, c
11
y
76
+ 27y
75
+ ··· + 156y
2
+ 1
c
7
, c
9
y
76
+ 60y
75
+ ··· + 712704y + 65536
c
10
, c
12
y
76
+ 47y
75
+ ··· + 312y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.820067 + 0.580500I
a = 1.05528 2.33587I
b = 0.24200 2.52038I
0.28459 + 11.09290I 0
u = 0.820067 0.580500I
a = 1.05528 + 2.33587I
b = 0.24200 + 2.52038I
0.28459 11.09290I 0
u = 0.784162 + 0.610183I
a = 0.218261 1.162730I
b = 1.28826 0.84685I
2.88911 + 3.62351I 0
u = 0.784162 0.610183I
a = 0.218261 + 1.162730I
b = 1.28826 + 0.84685I
2.88911 3.62351I 0
u = 0.804404 + 0.574368I
a = 1.08811 + 1.63791I
b = 0.04056 + 1.69896I
2.31596 + 5.81698I 0
u = 0.804404 0.574368I
a = 1.08811 1.63791I
b = 0.04056 1.69896I
2.31596 5.81698I 0
u = 0.266450 + 1.003770I
a = 0.051209 0.894123I
b = 0.382872 + 0.726383I
0.37911 + 6.19852I 0
u = 0.266450 1.003770I
a = 0.051209 + 0.894123I
b = 0.382872 0.726383I
0.37911 6.19852I 0
u = 0.758972 + 0.572804I
a = 1.15206 + 2.58616I
b = 0.38835 + 2.61192I
1.30562 4.85760I 4.00000 + 2.81637I
u = 0.758972 0.572804I
a = 1.15206 2.58616I
b = 0.38835 2.61192I
1.30562 + 4.85760I 4.00000 2.81637I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.614417 + 0.865433I
a = 0.80686 1.36588I
b = 0.59195 1.44117I
0.59560 + 2.40827I 0
u = 0.614417 0.865433I
a = 0.80686 + 1.36588I
b = 0.59195 + 1.44117I
0.59560 2.40827I 0
u = 0.682974 + 0.815558I
a = 2.87082 + 1.38786I
b = 0.95465 + 3.40719I
3.11243 0.72332I 0
u = 0.682974 0.815558I
a = 2.87082 1.38786I
b = 0.95465 3.40719I
3.11243 + 0.72332I 0
u = 0.215813 + 0.910718I
a = 0.265261 + 0.121375I
b = 0.586596 0.385311I
1.49867 + 2.13083I 0. 5.38892I
u = 0.215813 0.910718I
a = 0.265261 0.121375I
b = 0.586596 + 0.385311I
1.49867 2.13083I 0. + 5.38892I
u = 0.737672 + 0.767805I
a = 1.05157 + 1.41551I
b = 0.22256 + 1.66158I
4.16374 + 0.54928I 0
u = 0.737672 0.767805I
a = 1.05157 1.41551I
b = 0.22256 1.66158I
4.16374 0.54928I 0
u = 0.744701 + 0.542472I
a = 1.18253 1.67888I
b = 0.01927 1.66588I
3.09050 + 0.22669I 1.99230 2.08336I
u = 0.744701 0.542472I
a = 1.18253 + 1.67888I
b = 0.01927 + 1.66588I
3.09050 0.22669I 1.99230 + 2.08336I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.774528 + 0.755664I
a = 1.82547 1.78464I
b = 0.27849 2.85903I
6.90483 + 4.88361I 0
u = 0.774528 0.755664I
a = 1.82547 + 1.78464I
b = 0.27849 + 2.85903I
6.90483 4.88361I 0
u = 0.636867 + 0.654546I
a = 1.10871 + 1.19060I
b = 1.71940 + 0.17017I
1.56601 + 1.58828I 7.89253 2.90076I
u = 0.636867 0.654546I
a = 1.10871 1.19060I
b = 1.71940 0.17017I
1.56601 1.58828I 7.89253 + 2.90076I
u = 0.639841 + 0.879271I
a = 0.543599 + 0.737979I
b = 0.075619 + 0.338430I
0.96997 4.97477I 0
u = 0.639841 0.879271I
a = 0.543599 0.737979I
b = 0.075619 0.338430I
0.96997 + 4.97477I 0
u = 0.716966 + 0.538440I
a = 0.779361 + 0.668048I
b = 0.292228 + 0.497426I
1.60658 2.39995I 4.54324 + 1.90730I
u = 0.716966 0.538440I
a = 0.779361 0.668048I
b = 0.292228 0.497426I
1.60658 + 2.39995I 4.54324 1.90730I
u = 0.528629 + 0.969740I
a = 0.495625 0.870919I
b = 0.596905 + 0.163211I
0.23592 + 3.03712I 0
u = 0.528629 0.969740I
a = 0.495625 + 0.870919I
b = 0.596905 0.163211I
0.23592 3.03712I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.014582 + 1.106940I
a = 0.698613 + 0.845252I
b = 0.83233 1.27996I
6.97493 3.72971I 0
u = 0.014582 1.106940I
a = 0.698613 0.845252I
b = 0.83233 + 1.27996I
6.97493 + 3.72971I 0
u = 0.759065 + 0.810624I
a = 0.21510 2.16462I
b = 1.83924 1.72824I
7.82704 2.79074I 0
u = 0.759065 0.810624I
a = 0.21510 + 2.16462I
b = 1.83924 + 1.72824I
7.82704 + 2.79074I 0
u = 0.003461 + 1.114350I
a = 0.484952 0.498420I
b = 1.039760 + 0.702363I
8.62942 + 1.55231I 0
u = 0.003461 1.114350I
a = 0.484952 + 0.498420I
b = 1.039760 0.702363I
8.62942 1.55231I 0
u = 0.678647 + 0.889200I
a = 0.99601 + 3.18933I
b = 2.29317 + 2.94183I
2.88720 + 5.97422I 0
u = 0.678647 0.889200I
a = 0.99601 3.18933I
b = 2.29317 2.94183I
2.88720 5.97422I 0
u = 0.756171 + 0.426179I
a = 0.797372 0.584543I
b = 0.344833 0.560635I
1.18722 + 7.92961I 5.68516 7.58189I
u = 0.756171 0.426179I
a = 0.797372 + 0.584543I
b = 0.344833 + 0.560635I
1.18722 7.92961I 5.68516 + 7.58189I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.040806 + 1.132090I
a = 0.446780 + 0.376335I
b = 0.941823 0.709155I
8.37243 + 4.62112I 0
u = 0.040806 1.132090I
a = 0.446780 0.376335I
b = 0.941823 + 0.709155I
8.37243 4.62112I 0
u = 0.054219 + 1.140020I
a = 0.589590 0.733142I
b = 0.70115 + 1.27546I
6.50055 + 9.90761I 0
u = 0.054219 1.140020I
a = 0.589590 + 0.733142I
b = 0.70115 1.27546I
6.50055 9.90761I 0
u = 0.735374 + 0.908373I
a = 1.93507 0.56007I
b = 1.05640 2.40281I
7.52975 2.85954I 0
u = 0.735374 0.908373I
a = 1.93507 + 0.56007I
b = 1.05640 + 2.40281I
7.52975 + 2.85954I 0
u = 0.707706 + 0.935010I
a = 1.03539 + 1.48069I
b = 0.48512 + 1.88720I
3.65836 6.05326I 0
u = 0.707706 0.935010I
a = 1.03539 1.48069I
b = 0.48512 1.88720I
3.65836 + 6.05326I 0
u = 0.632430 + 1.003530I
a = 1.272460 0.506257I
b = 1.24027 + 1.30625I
0.49083 + 3.41773I 0
u = 0.632430 1.003530I
a = 1.272460 + 0.506257I
b = 1.24027 1.30625I
0.49083 3.41773I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.727570 + 0.952707I
a = 1.41975 2.28891I
b = 1.28428 2.82954I
6.30922 10.55470I 0
u = 0.727570 0.952707I
a = 1.41975 + 2.28891I
b = 1.28428 + 2.82954I
6.30922 + 10.55470I 0
u = 0.014242 + 0.784224I
a = 0.639035 0.926041I
b = 0.869179 0.194601I
2.08815 + 1.38840I 2.95491 3.97928I
u = 0.014242 0.784224I
a = 0.639035 + 0.926041I
b = 0.869179 + 0.194601I
2.08815 1.38840I 2.95491 + 3.97928I
u = 0.619260 + 1.054980I
a = 0.429463 0.595270I
b = 0.312184 0.533722I
4.72824 + 2.31494I 0
u = 0.619260 1.054980I
a = 0.429463 + 0.595270I
b = 0.312184 + 0.533722I
4.72824 2.31494I 0
u = 0.650542 + 1.042030I
a = 1.34113 1.51578I
b = 0.49049 2.32412I
4.53764 + 5.08932I 0
u = 0.650542 1.042030I
a = 1.34113 + 1.51578I
b = 0.49049 + 2.32412I
4.53764 5.08932I 0
u = 0.655264 + 1.042540I
a = 0.467205 + 0.606561I
b = 0.260958 + 0.532361I
4.45459 8.18431I 0
u = 0.655264 1.042540I
a = 0.467205 0.606561I
b = 0.260958 0.532361I
4.45459 + 8.18431I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.663246 + 1.039230I
a = 2.27057 + 1.76444I
b = 0.36310 + 3.31027I
2.67522 + 10.26500I 0
u = 0.663246 1.039230I
a = 2.27057 1.76444I
b = 0.36310 3.31027I
2.67522 10.26500I 0
u = 0.681711 + 1.035000I
a = 1.189270 + 0.104639I
b = 0.94885 1.58563I
1.62052 9.16663I 0
u = 0.681711 1.035000I
a = 1.189270 0.104639I
b = 0.94885 + 1.58563I
1.62052 + 9.16663I 0
u = 0.677356 + 1.053730I
a = 1.29035 + 1.43391I
b = 0.40380 + 2.25686I
3.74543 11.38940I 0
u = 0.677356 1.053730I
a = 1.29035 1.43391I
b = 0.40380 2.25686I
3.74543 + 11.38940I 0
u = 0.684596 + 1.057450I
a = 2.07654 1.62476I
b = 0.33793 3.06189I
1.7152 16.7334I 0
u = 0.684596 1.057450I
a = 2.07654 + 1.62476I
b = 0.33793 + 3.06189I
1.7152 + 16.7334I 0
u = 0.607659 + 0.388530I
a = 0.330601 + 0.231355I
b = 0.754959 + 0.436898I
1.72401 + 1.26068I 9.61689 3.20971I
u = 0.607659 0.388530I
a = 0.330601 0.231355I
b = 0.754959 0.436898I
1.72401 1.26068I 9.61689 + 3.20971I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.141223 + 0.694571I
a = 0.45492 + 1.73909I
b = 0.930270 0.034337I
1.00182 2.99656I 0.34736 + 1.79586I
u = 0.141223 0.694571I
a = 0.45492 1.73909I
b = 0.930270 + 0.034337I
1.00182 + 2.99656I 0.34736 1.79586I
u = 0.606989 + 0.079902I
a = 0.801617 0.099145I
b = 0.509633 0.600376I
3.65273 + 3.42052I 12.40083 4.88890I
u = 0.606989 0.079902I
a = 0.801617 + 0.099145I
b = 0.509633 + 0.600376I
3.65273 3.42052I 12.40083 + 4.88890I
u = 0.214408 + 0.135150I
a = 0.38448 + 2.43399I
b = 0.411442 0.639233I
0.32678 + 1.73919I 2.49698 4.03216I
u = 0.214408 0.135150I
a = 0.38448 2.43399I
b = 0.411442 + 0.639233I
0.32678 1.73919I 2.49698 + 4.03216I
12
II. I
u
2
= hb, a + u + 1, u
2
+ u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u 1
a
1
=
u
u 1
a
3
=
u 1
0
a
2
=
u 1
u 1
a
6
=
u
u + 1
a
4
=
0
1
a
5
=
0
1
a
10
=
0
u
a
8
=
0
u
a
9
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 7
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
12
u
2
u + 1
c
2
, c
10
, c
11
u
2
+ u + 1
c
4
, c
7
, c
8
c
9
u
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
10
c
11
, c
12
y
2
+ y + 1
c
4
, c
7
, c
8
c
9
y
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0
4.05977I 3.00000 6.92820I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0
4.05977I 3.00000 + 6.92820I
16
III. I
u
3
= hb, a 1, u
15
+ 3u
13
+ · · · + 2u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
3
=
1
0
a
2
=
1
u
2
a
6
=
u
u
3
+ u
a
4
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
0
u
a
10
=
u
4
+ u
2
+ 1
u
4
a
8
=
u
9
2u
7
3u
5
2u
3
u
u
9
u
7
u
5
+ u
a
9
=
u
14
+ 3u
12
+ 6u
10
+ 7u
8
+ 6u
6
+ 4u
4
+ 2u
2
+ 1
u
14
+ 2u
12
+ 3u
10
+ 2u
8
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
8u
8
12u
6
4u
5
8u
4
4u
3
4u
2
4u 10
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 6u
14
+ ··· + 2u 1
c
2
, c
5
, c
6
c
11
u
15
+ 3u
13
+ ··· + 2u + 1
c
3
u
15
+ 3u
13
+ ··· 4u + 1
c
4
, c
8
(u
3
u
2
+ 1)
5
c
7
, c
9
(u
3
+ u
2
+ 2u + 1)
5
c
10
, c
12
u
15
6u
14
+ ··· + 2u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
, c
12
y
15
+ 6y
14
+ ··· + 18y 1
c
2
, c
5
, c
6
c
11
y
15
+ 6y
14
+ ··· + 2y 1
c
3
y
15
+ 6y
14
+ ··· 14y 1
c
4
, c
8
(y
3
y
2
+ 2y 1)
5
c
7
, c
9
(y
3
+ 3y
2
+ 2y 1)
5
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.633840 + 0.835010I
a = 1.00000
b = 0
1.11345 9.01951 + 0.I
u = 0.633840 0.835010I
a = 1.00000
b = 0
1.11345 9.01951 + 0.I
u = 0.406029 + 0.986492I
a = 1.00000
b = 0
1.11345 9.01951 + 0.I
u = 0.406029 0.986492I
a = 1.00000
b = 0
1.11345 9.01951 + 0.I
u = 0.752750 + 0.551515I
a = 1.00000
b = 0
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.752750 0.551515I
a = 1.00000
b = 0
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.048319 + 1.089120I
a = 1.00000
b = 0
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.048319 1.089120I
a = 1.00000
b = 0
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.742775 + 0.457992I
a = 1.00000
b = 0
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.742775 0.457992I
a = 1.00000
b = 0
3.02413 2.82812I 2.49024 + 2.97945I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.644158 + 1.035000I
a = 1.00000
b = 0
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.644158 1.035000I
a = 1.00000
b = 0
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.605814 + 1.063630I
a = 1.00000
b = 0
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.605814 1.063630I
a = 1.00000
b = 0
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.455622
a = 1.00000
b = 0
1.11345 9.01950
21
IV. I
u
4
= hb, a 1, u
2
+ u + 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u 1
a
1
=
u
u 1
a
3
=
1
0
a
2
=
1
u 1
a
6
=
u
u + 1
a
4
=
0
u
a
5
=
0
u
a
10
=
0
u
a
8
=
0
u
a
9
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
c
6
, c
12
u
2
u + 1
c
2
, c
10
, c
11
u
2
+ u + 1
c
4
, c
7
, c
8
c
9
u
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
10
c
11
, c
12
y
2
+ y + 1
c
4
, c
7
, c
8
c
9
y
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0
0 0
u = 0.500000 0.866025I
a = 1.00000
b = 0
0 0
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
15
+ 6u
14
+ ··· + 2u 1)(u
76
+ 35u
75
+ ··· 12u
2
+ 1)
c
2
((u
2
+ u + 1)
2
)(u
15
+ 3u
13
+ ··· + 2u + 1)(u
76
+ 3u
75
+ ··· + 2u + 1)
c
3
((u
2
u + 1)
2
)(u
15
+ 3u
13
+ ··· 4u + 1)(u
76
3u
75
+ ··· 2u + 1)
c
4
, c
8
u
4
(u
3
u
2
+ 1)
5
(u
76
+ 4u
75
+ ··· + 16u + 16)
c
5
((u
2
u + 1)
2
)(u
15
+ 3u
13
+ ··· + 2u + 1)(u
76
+ 3u
75
+ ··· + 2u + 1)
c
6
((u
2
u + 1)
2
)(u
15
+ 3u
13
+ ··· + 2u + 1)(u
76
3u
75
+ ··· 4u + 1)
c
7
, c
9
u
4
(u
3
+ u
2
+ 2u + 1)
5
(u
76
+ 20u
75
+ ··· + 1152u + 256)
c
10
((u
2
+ u + 1)
2
)(u
15
6u
14
+ ··· + 2u + 1)(u
76
27u
75
+ ··· + 156u
2
+ 1)
c
11
((u
2
+ u + 1)
2
)(u
15
+ 3u
13
+ ··· + 2u + 1)(u
76
3u
75
+ ··· 4u + 1)
c
12
((u
2
u + 1)
2
)(u
15
6u
14
+ ··· + 2u + 1)(u
76
27u
75
+ ··· + 156u
2
+ 1)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
2
)(y
15
+ 6y
14
+ ··· + 18y 1)(y
76
+ 15y
75
+ ··· 24y + 1)
c
2
, c
5
((y
2
+ y + 1)
2
)(y
15
+ 6y
14
+ ··· + 2y 1)(y
76
+ 35y
75
+ ··· 12y
2
+ 1)
c
3
((y
2
+ y + 1)
2
)(y
15
+ 6y
14
+ ··· 14y 1)(y
76
5y
75
+ ··· 96y + 1)
c
4
, c
8
y
4
(y
3
y
2
+ 2y 1)
5
(y
76
20y
75
+ ··· 1152y + 256)
c
6
, c
11
((y
2
+ y + 1)
2
)(y
15
+ 6y
14
+ ··· + 2y 1)(y
76
+ 27y
75
+ ··· + 156y
2
+ 1)
c
7
, c
9
y
4
(y
3
+ 3y
2
+ 2y 1)
5
(y
76
+ 60y
75
+ ··· + 712704y + 65536)
c
10
, c
12
((y
2
+ y + 1)
2
)(y
15
+ 6y
14
+ ··· + 18y 1)
· (y
76
+ 47y
75
+ ··· + 312y + 1)
27