12a
0030
(K12a
0030
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 10 11 4 8 1 7
Solving Sequence
4,9 2,5
3 6 10
1,11
8 7 12
c
4
c
2
c
5
c
9
c
1
c
8
c
7
c
12
c
3
, c
6
, c
10
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h2.97380 × 10
162
u
76
− 7.99163 × 10
162
u
75
+ ··· + 1.45795 × 10
166
d − 5.67098 × 10
165
,
4.24191 × 10
162
u
76
− 1.61625 × 10
163
u
75
+ ··· + 1.45795 × 10
166
c + 2.78196 × 10
165
,
6.76436 × 10
182
u
76
− 1.29212 × 10
183
u
75
+ ··· + 1.08760 × 10
185
b − 1.19824 × 10
185
,
1.65541 × 10
183
u
76
− 4.27644 × 10
183
u
75
+ ··· + 2.17520 × 10
185
a + 1.69038 × 10
186
,
u
77
− 2u
76
+ ··· − 2560u
2
− 512i
I
u
2
= h−c
2
u + d − c, u
3
c + c
3
+ u
2
c − u
3
+ cu − u + 1, −u
2
+ b + u − 1, u
3
− u
2
+ a + u − 1, u
4
+ u
2
− u + 1i
I
u
3
= h−c
2
u + d − c, −2u
5
c − u
4
c − u
5
− 3u
3
c − u
4
+ c
3
− 2u
2
c − 2u
3
− 2cu − 2u
2
− 2c − 2u − 2,
− 2u
5
− u
4
− 3u
3
− 2u
2
+ b − 3u − 2, −u
4
− u
2
+ a − u − 1, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
I
v
1
= ha, d, c − v, b − v, v
2
− v + 1i
I
v
2
= ha, d + v + 1, av + c + 1, b + v, v
2
+ v + 1i
I
v
3
= hc, d − 1, b, a − 1, v − 1i
I
v
4
= ha, db + da − cb − d + b − 1, a
2
d − cba − da + cb + ba + d − c − a + 1, dv − 1, cv + ba − bv − b − a,
b
2
− b + 1i
* 6 irreducible components of dim
C
= 0, with total 112 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1