12a
0033
(K12a
0033
)
A knot diagram
1
Linearized knot diagam
3 5 6 9 2 12 1 11 4 8 10 7
Solving Sequence
4,9
5
7,10,12
1 6 3 2 11 8
c
4
c
9
c
12
c
6
c
3
c
2
c
11
c
8
c
1
, c
5
, c
7
, c
10
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= 4.19179 × 10
162
u
76
8.99312 × 10
162
u
75
+ ··· + 5.13128 × 10
164
d + 1.74805 × 10
165
,
5.20225 × 10
162
u
76
1.09357 × 10
163
u
75
+ ··· + 5.13128 × 10
164
c + 2.30253 × 10
165
,
5.03182 × 10
182
u
76
1.22724 × 10
183
u
75
+ ··· + 1.08760 × 10
185
b + 3.35895 × 10
185
,
3.61857 × 10
182
u
76
+ 6.18392 × 10
182
u
75
+ ··· + 5.43799 × 10
184
a 1.83798 × 10
184
,
u
77
2u
76
+ ··· 2560u
2
512
I
u
2
= ⟨−43u
3
a
2
6a
2
u
2
37u
3
a 62a
2
u 58u
2
a + 38u
3
+ 36a
2
55au + 2u
2
+ 71d 78a 74u 12,
47u
3
a
2
+ 5a
2
u
2
52u
3
a 43a
2
u 70u
2
a 8u
3
+ 41a
2
37au + 22u
2
+ 71c 6a 104u + 10,
24u
3
a
2
5a
2
u
2
19u
3
a 28a
2
u u
2
a + 8u
3
+ 30a
2
34au 22u
2
+ 71b 65a 38u 10,
2u
3
a
2
u
3
a + a
3
2a
2
u 5u
2
a u
3
+ 2a
2
au + u
2
u, u
4
+ u
2
u + 1
I
u
3
= ⟨−75u
5
a
2
+ 125u
5
a + ··· 31a + 44, 55u
5
a
2
+ 167u
5
a + ··· + 143a 28,
58u
5
a
2
+ 59u
5
a + ··· 30a + 28,
2u
5
a
2
2u
4
a
2
+ 2u
5
a 4u
3
a
2
+ u
4
a + u
5
4a
2
u
2
+ 3u
3
a + a
3
4a
2
u 2u
2
a 4a
2
+ 2au + 2a,
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
I
v
1
= a, d v + 1, c + a, b + v 1, v
2
v + 1
I
v
2
= a, d, c v, b v 1, v
2
+ v + 1
I
v
3
= a, d + 1, c + a 1, b 1, v 1
I
v
4
= a, b
2
v bv + d + 2b v + 1, b
2
av bav + cb + 2ba av + a 1,
v
2
c bav + v
2
b cv av + v
2
+ c + 2a 2v, b
2
v
2
+ v
2
b 2bv + v
2
v + 1
* 6 irreducible components of dim
C
= 0, with total 112 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I.
I
u
1
= 4.19×10
162
u
76
8.99×10
162
u
75
+· · ·+5.13×10
164
d+1.75×10
165
, 5.20×
10
162
u
76
1.09×10
163
u
75
+· · · + 5.13×10
164
c+2.30×10
165
, 5.03×10
182
u
76
1.23 × 10
183
u
75
+ · · · + 1.09 × 10
185
b + 3.36 × 10
185
, 3.62 × 10
182
u
76
+ 6.18 ×
10
182
u
75
+ · · · + 5.44 × 10
184
a 1.84 × 10
184
, u
77
2u
76
+ · · · 2560u
2
512
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
7
=
0.00665423u
76
0.0113717u
75
+ ··· 8.65830u + 0.337989
0.00462654u
76
+ 0.0112840u
75
+ ··· + 6.23600u 3.08841
a
10
=
u
u
a
12
=
0.0101383u
76
+ 0.0213118u
75
+ ··· + 12.1450u 4.48724
0.00816908u
76
+ 0.0175261u
75
+ ··· + 11.0464u 3.40665
a
1
=
0.0125394u
76
+ 0.0245545u
75
+ ··· + 16.0108u 3.02234
0.00622485u
76
+ 0.0135037u
75
+ ··· + 7.88286u 2.23172
a
6
=
0.0108390u
76
0.0188168u
75
+ ··· 14.5481u + 0.522142
0.00170046u
76
+ 0.00573767u
75
+ ··· + 1.46268u 2.50020
a
3
=
0.00903125u
76
+ 0.0210962u
75
+ ··· + 7.69784u 4.39652
0.00575546u
76
+ 0.0105565u
75
+ ··· + 7.63073u + 1.82138
a
2
=
0.00761038u
76
+ 0.0196600u
75
+ ··· + 4.69111u 7.77114
0.00621954u
76
+ 0.0118805u
75
+ ··· + 6.90325u + 1.10173
a
11
=
0.00891820u
76
+ 0.0191719u
75
+ ··· + 11.1367u 4.56543
0.00694897u
76
+ 0.0153862u
75
+ ··· + 10.0381u 3.48484
a
8
=
0.00196923u
76
0.00378574u
75
+ ··· 1.09859u + 1.08059
0.00694897u
76
+ 0.0153862u
75
+ ··· + 10.0381u 3.48484
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0221138u
76
0.0478032u
75
+ ··· 21.6023u 0.388088
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
77
+ 36u
76
+ ··· + 216u 16
c
2
, c
5
u
77
+ 2u
76
+ ··· + 27u
2
4
c
3
u
77
2u
76
+ ··· + 351912u 66564
c
4
, c
9
u
77
2u
76
+ ··· 2560u
2
512
c
6
, c
7
, c
12
u
77
8u
76
+ ··· 72u 16
c
8
, c
10
u
77
+ 8u
76
+ ··· 72u 16
c
11
u
77
34u
76
+ ··· + 1568u 256
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
77
+ 12y
76
+ ··· + 84256y 256
c
2
, c
5
y
77
+ 36y
76
+ ··· + 216y 16
c
3
y
77
12y
76
+ ··· + 120020616504y 4430766096
c
4
, c
9
y
77
+ 30y
76
+ ··· 2621440y 262144
c
6
, c
7
, c
12
y
77
74y
76
+ ··· + 7712y 256
c
8
, c
10
y
77
34y
76
+ ··· + 1568y 256
c
11
y
77
+ 26y
76
+ ··· + 3416576y 65536
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.508886 + 0.845592I
a = 1.118510 + 0.861761I
b = 0.504405 0.239677I
c = 0.82230 2.15378I
d = 1.077350 0.552668I
2.40889 + 4.27390I 3.74115 6.44221I
u = 0.508886 0.845592I
a = 1.118510 0.861761I
b = 0.504405 + 0.239677I
c = 0.82230 + 2.15378I
d = 1.077350 + 0.552668I
2.40889 4.27390I 3.74115 + 6.44221I
u = 0.848496 + 0.585068I
a = 0.008580 + 0.439129I
b = 0.103075 0.222508I
c = 0.749137 0.747672I
d = 1.049330 + 0.534087I
3.78378 + 2.11500I 7.65464 1.99007I
u = 0.848496 0.585068I
a = 0.008580 0.439129I
b = 0.103075 + 0.222508I
c = 0.749137 + 0.747672I
d = 1.049330 0.534087I
3.78378 2.11500I 7.65464 + 1.99007I
u = 0.990280 + 0.319237I
a = 1.79246 + 0.10308I
b = 0.675932 1.005350I
c = 1.016130 + 0.043329I
d = 1.111790 0.533215I
2.98745 + 0.86657I 0
u = 0.990280 0.319237I
a = 1.79246 0.10308I
b = 0.675932 + 1.005350I
c = 1.016130 0.043329I
d = 1.111790 + 0.533215I
2.98745 0.86657I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617221 + 0.733532I
a = 0.619707 + 0.764557I
b = 0.277695 0.242708I
c = 0.75499 1.66880I
d = 1.079400 0.162408I
4.09446 + 0.35704I 8.04104 + 0.70386I
u = 0.617221 0.733532I
a = 0.619707 0.764557I
b = 0.277695 + 0.242708I
c = 0.75499 + 1.66880I
d = 1.079400 + 0.162408I
4.09446 0.35704I 8.04104 0.70386I
u = 0.517431 + 0.792256I
a = 0.602670 + 0.058164I
b = 1.312620 + 0.060155I
c = 0.799858 0.461927I
d = 2.05780 0.08517I
2.57405 0.08416I 4.54592 2.74373I
u = 0.517431 0.792256I
a = 0.602670 0.058164I
b = 1.312620 0.060155I
c = 0.799858 + 0.461927I
d = 2.05780 + 0.08517I
2.57405 + 0.08416I 4.54592 + 2.74373I
u = 0.082487 + 0.936352I
a = 0.948613 + 0.464331I
b = 0.836303 + 0.719975I
c = 0.066226 + 0.663106I
d = 0.575224 + 0.771574I
1.72016 + 1.41215I 1.65188 3.77223I
u = 0.082487 0.936352I
a = 0.948613 0.464331I
b = 0.836303 0.719975I
c = 0.066226 0.663106I
d = 0.575224 0.771574I
1.72016 1.41215I 1.65188 + 3.77223I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.582500 + 0.889546I
a = 0.372525 + 0.042062I
b = 0.984114 0.079699I
c = 0.620752 0.807952I
d = 1.88365 0.53487I
3.62010 5.07823I 6.10660 + 7.37918I
u = 0.582500 0.889546I
a = 0.372525 0.042062I
b = 0.984114 + 0.079699I
c = 0.620752 + 0.807952I
d = 1.88365 + 0.53487I
3.62010 + 5.07823I 6.10660 7.37918I
u = 0.228301 + 1.040040I
a = 0.13810 1.60777I
b = 1.48108 2.66829I
c = 0.126234 + 0.944655I
d = 0.516753 + 0.893507I
3.92825 1.69884I 4.65730 + 2.32962I
u = 0.228301 1.040040I
a = 0.13810 + 1.60777I
b = 1.48108 + 2.66829I
c = 0.126234 0.944655I
d = 0.516753 0.893507I
3.92825 + 1.69884I 4.65730 2.32962I
u = 0.782003 + 0.468875I
a = 2.36435 2.24948I
b = 1.06894 + 1.62874I
c = 0.310023 0.749893I
d = 0.722438 + 0.469371I
0.65497 3.51390I 3.54011 + 4.44478I
u = 0.782003 0.468875I
a = 2.36435 + 2.24948I
b = 1.06894 1.62874I
c = 0.310023 + 0.749893I
d = 0.722438 0.469371I
0.65497 + 3.51390I 3.54011 4.44478I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.374962 + 1.039940I
a = 0.00241 1.81691I
b = 1.04564 2.79506I
c = 0.054535 + 1.153860I
d = 0.648190 + 1.006590I
3.38837 3.78470I 0
u = 0.374962 1.039940I
a = 0.00241 + 1.81691I
b = 1.04564 + 2.79506I
c = 0.054535 1.153860I
d = 0.648190 1.006590I
3.38837 + 3.78470I 0
u = 0.965284 + 0.548957I
a = 0.183189 + 0.297060I
b = 0.297598 0.221943I
c = 0.820096 0.337678I
d = 1.051710 + 0.877929I
1.81197 6.85619I 0
u = 0.965284 0.548957I
a = 0.183189 0.297060I
b = 0.297598 + 0.221943I
c = 0.820096 + 0.337678I
d = 1.051710 0.877929I
1.81197 + 6.85619I 0
u = 0.288832 + 1.092220I
a = 1.30645 + 0.68041I
b = 1.045540 + 0.686079I
c = 0.140070 + 1.099610I
d = 0.513316 + 0.990185I
4.40655 + 2.61636I 0
u = 0.288832 1.092220I
a = 1.30645 0.68041I
b = 1.045540 0.686079I
c = 0.140070 1.099610I
d = 0.513316 0.990185I
4.40655 2.61636I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.815552 + 0.276755I
a = 0.393181 + 0.675339I
b = 0.097483 + 0.217571I
c = 0.125990 0.372709I
d = 0.310498 + 0.604570I
0.065597 0.205341I 1.21551 + 1.86968I
u = 0.815552 0.276755I
a = 0.393181 0.675339I
b = 0.097483 0.217571I
c = 0.125990 + 0.372709I
d = 0.310498 0.604570I
0.065597 + 0.205341I 1.21551 1.86968I
u = 0.008067 + 1.164640I
a = 0.831879 + 0.802027I
b = 0.838657 + 0.822115I
c = 0.537680 + 0.563389I
d = 0.297322 + 0.581051I
4.97078 4.99360I 0
u = 0.008067 1.164640I
a = 0.831879 0.802027I
b = 0.838657 0.822115I
c = 0.537680 0.563389I
d = 0.297322 0.581051I
4.97078 + 4.99360I 0
u = 1.177360 + 0.140655I
a = 1.271130 0.073091I
b = 0.52624 1.59073I
c = 0.914208 0.465491I
d = 0.97456 1.22806I
6.72367 + 2.38646I 0
u = 1.177360 0.140655I
a = 1.271130 + 0.073091I
b = 0.52624 + 1.59073I
c = 0.914208 + 0.465491I
d = 0.97456 + 1.22806I
6.72367 2.38646I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.516220 + 1.088150I
a = 0.25335 + 1.54951I
b = 2.64287 + 2.22003I
c = 0.099851 0.875419I
d = 1.071770 0.719904I
2.28765 3.11487I 0
u = 0.516220 1.088150I
a = 0.25335 1.54951I
b = 2.64287 2.22003I
c = 0.099851 + 0.875419I
d = 1.071770 + 0.719904I
2.28765 + 3.11487I 0
u = 1.143240 + 0.423905I
a = 1.84398 0.15315I
b = 1.05407 1.18141I
c = 1.391370 0.013506I
d = 1.59551 0.65628I
5.54743 5.38085I 0
u = 1.143240 0.423905I
a = 1.84398 + 0.15315I
b = 1.05407 + 1.18141I
c = 1.391370 + 0.013506I
d = 1.59551 + 0.65628I
5.54743 + 5.38085I 0
u = 1.079500 + 0.575143I
a = 1.83354 0.15848I
b = 0.99311 + 2.16498I
c = 1.062600 0.002710I
d = 1.21557 + 1.20650I
1.00971 5.65602I 0
u = 1.079500 0.575143I
a = 1.83354 + 0.15848I
b = 0.99311 2.16498I
c = 1.062600 + 0.002710I
d = 1.21557 1.20650I
1.00971 + 5.65602I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.163010 + 0.411297I
a = 0.932646 0.077718I
b = 0.61556 + 2.18561I
c = 0.600063 + 0.450923I
d = 0.71184 + 1.55150I
5.58247 + 2.79509I 0
u = 1.163010 0.411297I
a = 0.932646 + 0.077718I
b = 0.61556 2.18561I
c = 0.600063 0.450923I
d = 0.71184 1.55150I
5.58247 2.79509I 0
u = 0.530613 + 1.137340I
a = 0.105063 + 0.441883I
b = 0.477698 + 0.273175I
c = 0.250279 0.980703I
d = 0.925423 0.856938I
2.68982 + 5.10175I 0
u = 0.530613 1.137340I
a = 0.105063 0.441883I
b = 0.477698 0.273175I
c = 0.250279 + 0.980703I
d = 0.925423 + 0.856938I
2.68982 5.10175I 0
u = 0.601554 + 1.104580I
a = 0.00922 + 1.88522I
b = 2.21114 + 2.74600I
c = 0.048393 1.187080I
d = 1.17229 1.05265I
1.29562 + 8.75795I 0
u = 0.601554 1.104580I
a = 0.00922 1.88522I
b = 2.21114 2.74600I
c = 0.048393 + 1.187080I
d = 1.17229 + 1.05265I
1.29562 8.75795I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.666542 + 1.084300I
a = 0.037947 + 0.186829I
b = 0.412925 0.063735I
c = 0.116654 1.386120I
d = 1.37592 1.25181I
2.21245 7.79054I 0
u = 0.666542 1.084300I
a = 0.037947 0.186829I
b = 0.412925 + 0.063735I
c = 0.116654 + 1.386120I
d = 1.37592 + 1.25181I
2.21245 + 7.79054I 0
u = 0.620529 + 0.325559I
a = 1.77807 5.56934I
b = 1.16767 + 1.32481I
c = 0.359051 0.919317I
d = 0.376140 + 0.228285I
0.115678 1.341920I 2.41782 + 1.83708I
u = 0.620529 0.325559I
a = 1.77807 + 5.56934I
b = 1.16767 1.32481I
c = 0.359051 + 0.919317I
d = 0.376140 0.228285I
0.115678 + 1.341920I 2.41782 1.83708I
u = 1.161000 + 0.625559I
a = 1.85681 + 0.28553I
b = 1.03264 + 2.35339I
c = 1.348640 + 0.218279I
d = 1.44939 + 1.44440I
3.39852 + 10.69180I 0
u = 1.161000 0.625559I
a = 1.85681 0.28553I
b = 1.03264 2.35339I
c = 1.348640 0.218279I
d = 1.44939 1.44440I
3.39852 10.69180I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.423653 + 0.527399I
a = 1.74593 0.28445I
b = 0.556628 + 0.090443I
c = 0.424220 + 0.542119I
d = 0.623453 + 0.419471I
1.92120 + 0.81846I 4.58107 + 0.87681I
u = 0.423653 0.527399I
a = 1.74593 + 0.28445I
b = 0.556628 0.090443I
c = 0.424220 0.542119I
d = 0.623453 0.419471I
1.92120 0.81846I 4.58107 0.87681I
u = 0.662834 + 0.003253I
a = 0.226784 + 0.451173I
b = 0.577746 + 0.442113I
c = 0.680090 0.132286I
d = 0.197422 + 0.184363I
0.58945 + 2.77011I 1.22579 6.61866I
u = 0.662834 0.003253I
a = 0.226784 0.451173I
b = 0.577746 0.442113I
c = 0.680090 + 0.132286I
d = 0.197422 0.184363I
0.58945 2.77011I 1.22579 + 6.61866I
u = 0.703559 + 1.143570I
a = 0.181516 + 0.233850I
b = 0.233401 0.053613I
c = 0.04116 1.61209I
d = 1.22614 1.51356I
0.07596 + 12.98220I 0
u = 0.703559 1.143570I
a = 0.181516 0.233850I
b = 0.233401 + 0.053613I
c = 0.04116 + 1.61209I
d = 1.22614 + 1.51356I
0.07596 12.98220I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.624723 + 1.201920I
a = 0.19734 2.12904I
b = 0.63726 2.75540I
c = 0.33021 + 1.80553I
d = 0.96291 + 1.48151I
5.70918 6.67323I 0
u = 0.624723 1.201920I
a = 0.19734 + 2.12904I
b = 0.63726 + 2.75540I
c = 0.33021 1.80553I
d = 0.96291 1.48151I
5.70918 + 6.67323I 0
u = 0.127875 + 0.624992I
a = 0.97951 + 3.07905I
b = 0.341044 + 0.403757I
c = 0.03373 2.60509I
d = 0.194927 0.524028I
0.93270 1.56780I 1.99036 0.81001I
u = 0.127875 0.624992I
a = 0.97951 3.07905I
b = 0.341044 0.403757I
c = 0.03373 + 2.60509I
d = 0.194927 + 0.524028I
0.93270 + 1.56780I 1.99036 + 0.81001I
u = 0.115044 + 1.357830I
a = 0.565753 0.402137I
b = 1.143390 0.603699I
c = 1.139500 + 0.344978I
d = 0.179723 + 0.294069I
9.14335 2.92995I 0
u = 0.115044 1.357830I
a = 0.565753 + 0.402137I
b = 1.143390 + 0.603699I
c = 1.139500 0.344978I
d = 0.179723 0.294069I
9.14335 + 2.92995I 0
15
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.518606 + 1.307430I
a = 0.40096 2.01546I
b = 0.57151 2.58245I
c = 0.09494 + 1.89349I
d = 0.61008 + 1.60156I
10.68990 + 3.50430I 0
u = 0.518606 1.307430I
a = 0.40096 + 2.01546I
b = 0.57151 + 2.58245I
c = 0.09494 1.89349I
d = 0.61008 1.60156I
10.68990 3.50430I 0
u = 0.758435 + 1.184640I
a = 0.64579 + 2.27951I
b = 1.18564 + 3.27514I
c = 0.10967 1.88745I
d = 1.17616 1.81573I
2.97939 + 12.30500I 0
u = 0.758435 1.184640I
a = 0.64579 2.27951I
b = 1.18564 3.27514I
c = 0.10967 + 1.88745I
d = 1.17616 + 1.81573I
2.97939 12.30500I 0
u = 0.69467 + 1.24791I
a = 0.21709 2.24890I
b = 0.58292 2.80554I
c = 0.45261 + 2.01847I
d = 1.09745 + 1.65272I
8.2281 + 11.9338I 0
u = 0.69467 1.24791I
a = 0.21709 + 2.24890I
b = 0.58292 + 2.80554I
c = 0.45261 2.01847I
d = 1.09745 1.65272I
8.2281 11.9338I 0
16
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.043030 + 0.567805I
a = 0.248115 + 0.756603I
b = 0.40870 + 1.85697I
c = 0.182345 + 1.003610I
d = 0.42920 + 2.02878I
0.91327 + 2.30980I 2.35018 5.72620I
u = 0.043030 0.567805I
a = 0.248115 0.756603I
b = 0.40870 1.85697I
c = 0.182345 1.003610I
d = 0.42920 2.02878I
0.91327 2.30980I 2.35018 + 5.72620I
u = 0.68480 + 1.26233I
a = 0.77022 + 1.88079I
b = 1.05613 + 2.67355I
c = 0.52883 1.71234I
d = 0.71570 1.66643I
8.38263 9.37788I 0
u = 0.68480 1.26233I
a = 0.77022 1.88079I
b = 1.05613 2.67355I
c = 0.52883 + 1.71234I
d = 0.71570 + 1.66643I
8.38263 + 9.37788I 0
u = 0.80648 + 1.20827I
a = 0.81681 + 2.38600I
b = 0.91530 + 3.40016I
c = 0.12117 2.11842I
d = 1.18116 2.06331I
5.3240 17.7550I 0
u = 0.80648 1.20827I
a = 0.81681 2.38600I
b = 0.91530 3.40016I
c = 0.12117 + 2.11842I
d = 1.18116 + 2.06331I
5.3240 + 17.7550I 0
17
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.00564 + 1.45291I
a = 0.851063 0.822170I
b = 0.636678 1.070480I
c = 1.36039 + 0.81823I
d = 0.427830 + 0.688849I
13.06970 1.34685I 0
u = 0.00564 1.45291I
a = 0.851063 + 0.822170I
b = 0.636678 + 1.070480I
c = 1.36039 0.81823I
d = 0.427830 0.688849I
13.06970 + 1.34685I 0
u = 0.22004 + 1.44810I
a = 0.929164 0.066704I
b = 0.729786 0.060469I
c = 1.50177 + 0.01187I
d = 0.470629 0.058111I
12.6554 + 7.5654I 0
u = 0.22004 1.44810I
a = 0.929164 + 0.066704I
b = 0.729786 + 0.060469I
c = 1.50177 0.01187I
d = 0.470629 + 0.058111I
12.6554 7.5654I 0
u = 0.499413
a = 1.13138
b = 0.269950
c = 1.32737
d = 0.0790890
1.20722 9.11790
18
II. I
u
2
=
⟨−43a
2
u
3
37au
3
+· · ·78a12, 47a
2
u
3
52au
3
+· · ·6a+10, 24a
2
u
3
19au
3
+ · · · 65a 10, 2u
3
a
2
u
3
a + · · · + a
3
+ 2a
2
, u
4
+ u
2
u + 1
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
7
=
a
0.338028a
2
u
3
+ 0.267606au
3
+ ··· + 0.915493a + 0.140845
a
10
=
u
u
a
12
=
0.661972a
2
u
3
+ 0.732394au
3
+ ··· + 0.0845070a 0.140845
0.605634a
2
u
3
+ 0.521127au
3
+ ··· + 1.09859a + 0.169014
a
1
=
u
u
a
6
=
u
3
u
3
+ u
a
3
=
u
3
+ u
2
+ 1
u
3
+ u
2
u + 1
a
2
=
u
3
+ u
2
u + 1
u
2
u + 1
a
11
=
0.338028a
2
u
3
+ 0.267606au
3
+ ··· 0.0845070a + 0.140845
0.281690a
2
u
3
+ 0.0563380au
3
+ ··· + 0.929577a + 0.450704
a
8
=
0.0563380a
2
u
3
0.211268au
3
+ ··· + 1.01408a + 0.309859
0.281690a
2
u
3
+ 0.0563380au
3
+ ··· + 0.929577a + 0.450704
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
+ 2
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 2u
3
+ 3u
2
+ u + 1)
3
c
2
, c
4
, c
5
c
9
(u
4
+ u
2
u + 1)
3
c
3
(u
4
3u
3
+ 4u
2
3u + 2)
3
c
6
, c
7
, c
8
c
10
, c
12
u
12
4u
10
2u
9
+ 6u
8
+ 6u
7
u
6
6u
5
5u
4
+ u
3
+ 3u
2
+ u + 1
c
11
u
12
8u
11
+ ··· + 5u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
3
c
2
, c
4
, c
5
c
9
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
c
3
(y
4
y
3
+ 2y
2
+ 7y + 4)
3
c
6
, c
7
, c
8
c
10
, c
12
y
12
8y
11
+ ··· + 5y + 1
c
11
y
12
8y
11
+ ··· 31y + 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 1.89198 0.26082I
b = 3.05256 + 0.49971I
c = 1.42862 0.19451I
d = 2.88321 + 0.32177I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 + 0.585652I
a = 0.0684280 + 0.0496997I
b = 0.375309 + 0.506052I
c = 0.571089 + 0.621740I
d = 0.814495 + 0.406682I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 + 0.585652I
a = 0.25679 + 2.03371I
b = 0.973637 + 0.816821I
c = 0.23731 1.59853I
d = 0.729744 0.077176I
0.98010 + 1.39709I 3.77019 3.86736I
u = 0.547424 0.585652I
a = 1.89198 + 0.26082I
b = 3.05256 0.49971I
c = 1.42862 + 0.19451I
d = 2.88321 0.32177I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 0.585652I
a = 0.0684280 0.0496997I
b = 0.375309 0.506052I
c = 0.571089 0.621740I
d = 0.814495 0.406682I
0.98010 1.39709I 3.77019 + 3.86736I
u = 0.547424 0.585652I
a = 0.25679 2.03371I
b = 0.973637 0.816821I
c = 0.23731 + 1.59853I
d = 0.729744 + 0.077176I
0.98010 1.39709I 3.77019 + 3.86736I
22
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 1.120870I
a = 0.522652 0.149285I
b = 0.017395 + 0.374071I
c = 0.25807 + 1.52032I
d = 0.86105 + 1.25168I
2.62503 7.64338I 1.77019 + 6.51087I
u = 0.547424 + 1.120870I
a = 1.11333 1.38898I
b = 1.91343 0.82551I
c = 0.173830 1.019770I
d = 1.013450 0.887820I
2.62503 7.64338I 1.77019 + 6.51087I
u = 0.547424 + 1.120870I
a = 0.93237 + 2.97895I
b = 1.22720 + 1.89212I
c = 1.52675 2.74230I
d = 1.64606 1.16492I
2.62503 7.64338I 1.77019 + 6.51087I
u = 0.547424 1.120870I
a = 0.522652 + 0.149285I
b = 0.017395 0.374071I
c = 0.25807 1.52032I
d = 0.86105 1.25168I
2.62503 + 7.64338I 1.77019 6.51087I
u = 0.547424 1.120870I
a = 1.11333 + 1.38898I
b = 1.91343 + 0.82551I
c = 0.173830 + 1.019770I
d = 1.013450 + 0.887820I
2.62503 + 7.64338I 1.77019 6.51087I
u = 0.547424 1.120870I
a = 0.93237 2.97895I
b = 1.22720 1.89212I
c = 1.52675 + 2.74230I
d = 1.64606 + 1.16492I
2.62503 + 7.64338I 1.77019 6.51087I
23
III. I
u
3
= ⟨−75a
2
u
5
+ 125au
5
+ · · · 31a + 44, 55a
2
u
5
+ 167au
5
+ · · · +
143a 28, 58a
2
u
5
+ 59au
5
+ · · · 30a + 28, 2u
5
a
2
+ 2u
5
a + · · · 4a
2
+
2a, u
6
+ u
5
+ · · · + 2u + 1
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
7
=
a
0.513274a
2
u
5
0.522124au
5
+ ··· + 0.265487a 0.247788
a
10
=
u
u
a
12
=
0.486726a
2
u
5
1.47788au
5
+ ··· 1.26549a + 0.247788
0.663717a
2
u
5
1.10619au
5
+ ··· + 0.274336a 0.389381
a
1
=
u
u
a
6
=
u
3
u
3
+ u
a
3
=
u
5
+ u
4
+ 2u
3
+ 2u
2
+ 2u + 2
u
5
+ 2u
3
+ u
2
+ 2u + 1
a
2
=
u
4
+ u
2
+ u + 1
2u
5
+ u
4
+ 3u
3
+ 2u
2
+ 3u + 2
a
11
=
0.513274a
2
u
5
0.522124au
5
+ ··· 0.734513a 0.247788
0.690265a
2
u
5
0.150442au
5
+ ··· + 0.805310a 0.884956
a
8
=
0.176991a
2
u
5
+ 0.371681au
5
+ ··· + 1.53982a 0.637168
0.690265a
2
u
5
0.150442au
5
+ ··· + 0.805310a 0.884956
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u 2
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
3
c
2
, c
4
, c
5
c
9
(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
3
c
3
(u
3
+ u
2
1)
6
c
6
, c
7
, c
8
c
10
, c
12
u
18
6u
16
+ ··· + 2u
3
+ 1
c
11
u
18
12u
17
+ ··· + 8u
2
+ 1
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
3
c
2
, c
4
, c
5
c
9
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
c
3
(y
3
y
2
+ 2y 1)
6
c
6
, c
7
, c
8
c
10
, c
12
y
18
12y
17
+ ··· + 8y
2
+ 1
c
11
y
18
12y
17
+ ··· + 16y + 1
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 1.17148 1.07480I
b = 1.99587 0.45347I
c = 0.157661 0.713279I
d = 1.32986 0.49621I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 + 1.001300I
a = 0.358089 0.128198I
b = 0.131651 + 0.402262I
c = 0.299325 + 1.234880I
d = 0.840299 + 1.017300I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 + 1.001300I
a = 0.73236 + 2.80324I
b = 1.06700 + 1.65145I
c = 1.13933 2.52421I
d = 1.30532 0.92346I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.498832 1.001300I
a = 1.17148 + 1.07480I
b = 1.99587 + 0.45347I
c = 0.157661 + 0.713279I
d = 1.32986 + 0.49621I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.498832 1.001300I
a = 0.358089 + 0.128198I
b = 0.131651 0.402262I
c = 0.299325 1.234880I
d = 0.840299 1.017300I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.498832 1.001300I
a = 0.73236 2.80324I
b = 1.06700 1.65145I
c = 1.13933 + 2.52421I
d = 1.30532 + 0.92346I
0.26574 2.82812I 1.50976 + 2.97945I
27
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.284920 + 1.115140I
a = 0.589677 1.038010I
b = 1.292560 0.412855I
c = 0.384455 0.173537I
d = 0.624963 0.038245I
4.40332 5.01951 + 0.I
u = 0.284920 + 1.115140I
a = 0.295266 0.439795I
b = 0.225579 + 0.124250I
c = 0.183101 + 1.122730I
d = 0.485466 + 1.007580I
4.40332 5.01951 + 0.I
u = 0.284920 + 1.115140I
a = 0.45478 + 3.16140I
b = 0.63682 + 1.97219I
c = 0.77119 3.17947I
d = 0.86050 1.51603I
4.40332 5.01951 + 0.I
u = 0.284920 1.115140I
a = 0.589677 + 1.038010I
b = 1.292560 + 0.412855I
c = 0.384455 + 0.173537I
d = 0.624963 + 0.038245I
4.40332 5.01951 + 0.I
u = 0.284920 1.115140I
a = 0.295266 + 0.439795I
b = 0.225579 0.124250I
c = 0.183101 1.122730I
d = 0.485466 1.007580I
4.40332 5.01951 + 0.I
u = 0.284920 1.115140I
a = 0.45478 3.16140I
b = 0.63682 1.97219I
c = 0.77119 + 3.17947I
d = 0.86050 + 1.51603I
4.40332 5.01951 + 0.I
28
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.713912 + 0.305839I
a = 0.161975 + 1.103030I
b = 1.085250 + 0.272261I
c = 0.223253 0.651146I
d = 0.361764 + 0.394419I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 + 0.305839I
a = 0.0828484 + 0.0502791I
b = 0.632432 + 0.441144I
c = 0.713791 + 0.255078I
d = 0.738624 0.097289I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 + 0.305839I
a = 2.61188 0.13927I
b = 4.08474 + 0.30064I
c = 2.36487 0.21561I
d = 4.17174 + 0.10523I
0.26574 + 2.82812I 1.50976 2.97945I
u = 0.713912 0.305839I
a = 0.161975 1.103030I
b = 1.085250 0.272261I
c = 0.223253 + 0.651146I
d = 0.361764 0.394419I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.713912 0.305839I
a = 0.0828484 0.0502791I
b = 0.632432 0.441144I
c = 0.713791 0.255078I
d = 0.738624 + 0.097289I
0.26574 2.82812I 1.50976 + 2.97945I
u = 0.713912 0.305839I
a = 2.61188 + 0.13927I
b = 4.08474 0.30064I
c = 2.36487 + 0.21561I
d = 4.17174 0.10523I
0.26574 2.82812I 1.50976 + 2.97945I
29
IV. I
v
1
= a, d v + 1, c + a, b + v 1, v
2
v + 1
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
7
=
0
v + 1
a
10
=
v
0
a
12
=
0
v 1
a
1
=
0
v 1
a
6
=
0
v + 1
a
3
=
1
v
a
2
=
v + 1
v
a
11
=
v
v 1
a
8
=
0
v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v + 11
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
6
, c
7
c
9
, c
12
u
2
c
8
(u + 1)
2
c
10
, c
11
(u 1)
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
6
, c
7
c
9
, c
12
y
2
c
8
, c
10
, c
11
(y 1)
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0
d = 0.500000 + 0.866025I
1.64493 + 2.02988I 9.00000 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0
d = 0.500000 0.866025I
1.64493 2.02988I 9.00000 + 3.46410I
33
V. I
v
2
= a, d, c v, b v 1, v
2
+ v + 1
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
7
=
0
v + 1
a
10
=
v
0
a
12
=
v
0
a
1
=
v
v 1
a
6
=
v
v + 1
a
3
=
0
v
a
2
=
v
v
a
11
=
v
0
a
8
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 1
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
8
, c
9
c
10
, c
11
u
2
c
6
, c
7
(u 1)
2
c
12
(u + 1)
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
8
, c
9
c
10
, c
11
y
2
c
6
, c
7
, c
12
(y 1)
2
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
c = 0.500000 + 0.866025I
d = 0
1.64493 2.02988I 3.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
c = 0.500000 0.866025I
d = 0
1.64493 + 2.02988I 3.00000 3.46410I
37
VI. I
v
3
= a, d + 1, c + a 1, b 1, v 1
(i) Arc colorings
a
4
=
1
0
a
9
=
1
0
a
5
=
1
0
a
7
=
0
1
a
10
=
1
0
a
12
=
1
1
a
1
=
1
0
a
6
=
1
0
a
3
=
1
0
a
2
=
1
0
a
11
=
2
1
a
8
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
9
u
c
6
, c
7
, c
8
u + 1
c
10
, c
11
, c
12
u 1
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
9
y
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y 1
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
0 0
41
VII. I
v
4
= a, b
2
v bv + · · · + 2b + 1, b
2
av bav + · · · + a 1, v
2
c +
v
2
b + · · · + c + 2a, b
2
v
2
+ v
2
b + · · · v + 1
(i) Arc colorings
a
4
=
1
0
a
9
=
v
0
a
5
=
1
0
a
7
=
0
b
a
10
=
v
0
a
12
=
c
b
2
v + bv 2b + v 1
a
1
=
c
b
2
v + bv b + v 1
a
6
=
c
b
2
v + bv b + v 1
a
3
=
cv bv + c v + 2
b
2
v + bv b + v
a
2
=
b
2
v cv 2bv + c + b 2v + 2
b
2
v + bv b + v
a
11
=
c + v
b
2
v + bv 2b + v 1
a
8
=
c
b
2
v bv + 2b v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2b
3
v b
2
v 3b
2
bv v
2
+ b 3v + 4
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
42
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
2.02988I 1.64184 3.78338I
43
VIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
2
u + 1)
2
(u
4
+ 2u
3
+ 3u
2
+ u + 1)
3
(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
3
· (u
77
+ 36u
76
+ ··· + 216u 16)
c
2
u(u
2
+ u + 1)
2
(u
4
+ u
2
u + 1)
3
· ((u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
3
)(u
77
+ 2u
76
+ ··· + 27u
2
4)
c
3
u(u
2
u + 1)
2
(u
3
+ u
2
1)
6
(u
4
3u
3
+ 4u
2
3u + 2)
3
· (u
77
2u
76
+ ··· + 351912u 66564)
c
4
, c
9
u
5
(u
4
+ u
2
u + 1)
3
(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
3
· (u
77
2u
76
+ ··· 2560u
2
512)
c
5
u(u
2
u + 1)
2
(u
4
+ u
2
u + 1)
3
· ((u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
3
)(u
77
+ 2u
76
+ ··· + 27u
2
4)
c
6
, c
7
u
2
(u 1)
2
(u + 1)
· (u
12
4u
10
2u
9
+ 6u
8
+ 6u
7
u
6
6u
5
5u
4
+ u
3
+ 3u
2
+ u + 1)
· (u
18
6u
16
+ ··· + 2u
3
+ 1)(u
77
8u
76
+ ··· 72u 16)
c
8
u
2
(u + 1)
3
· (u
12
4u
10
2u
9
+ 6u
8
+ 6u
7
u
6
6u
5
5u
4
+ u
3
+ 3u
2
+ u + 1)
· (u
18
6u
16
+ ··· + 2u
3
+ 1)(u
77
+ 8u
76
+ ··· 72u 16)
c
10
u
2
(u 1)
3
· (u
12
4u
10
2u
9
+ 6u
8
+ 6u
7
u
6
6u
5
5u
4
+ u
3
+ 3u
2
+ u + 1)
· (u
18
6u
16
+ ··· + 2u
3
+ 1)(u
77
+ 8u
76
+ ··· 72u 16)
c
11
u
2
(u 1)
3
(u
12
8u
11
+ ··· + 5u + 1)(u
18
12u
17
+ ··· + 8u
2
+ 1)
· (u
77
34u
76
+ ··· + 1568u 256)
c
12
u
2
(u 1)(u + 1)
2
· (u
12
4u
10
2u
9
+ 6u
8
+ 6u
7
u
6
6u
5
5u
4
+ u
3
+ 3u
2
+ u + 1)
· (u
18
6u
16
+ ··· + 2u
3
+ 1)(u
77
8u
76
+ ··· 72u 16)
44
IX. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y
2
+ y + 1)
2
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)
3
· ((y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
3
)(y
77
+ 12y
76
+ ··· + 84256y 256)
c
2
, c
5
y(y
2
+ y + 1)
2
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
· (y
77
+ 36y
76
+ ··· + 216y 16)
c
3
y(y
2
+ y + 1)
2
(y
3
y
2
+ 2y 1)
6
(y
4
y
3
+ 2y
2
+ 7y + 4)
3
· (y
77
12y
76
+ ··· + 120020616504y 4430766096)
c
4
, c
9
y
5
(y
4
+ 2y
3
+ 3y
2
+ y + 1)
3
(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
3
· (y
77
+ 30y
76
+ ··· 2621440y 262144)
c
6
, c
7
, c
12
y
2
(y 1)
3
(y
12
8y
11
+ ··· + 5y + 1)(y
18
12y
17
+ ··· + 8y
2
+ 1)
· (y
77
74y
76
+ ··· + 7712y 256)
c
8
, c
10
y
2
(y 1)
3
(y
12
8y
11
+ ··· + 5y + 1)(y
18
12y
17
+ ··· + 8y
2
+ 1)
· (y
77
34y
76
+ ··· + 1568y 256)
c
11
y
2
(y 1)
3
(y
12
8y
11
+ ··· 31y + 1)(y
18
12y
17
+ ··· + 16y + 1)
· (y
77
+ 26y
76
+ ··· + 3416576y 65536)
45