12a
0037
(K12a
0037
)
A knot diagram
1
Linearized knot diagam
3 5 6 10 2 12 1 11 4 9 8 7
Solving Sequence
1,8
7 12
4,6
3 2 5 11 9 10
c
7
c
12
c
6
c
3
c
1
c
5
c
11
c
8
c
10
c
2
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
67
+ 5u
66
+ ··· + b 2, 11u
67
+ 20u
66
+ ··· + 2a 9, u
68
+ 3u
67
+ ··· u 1i
I
u
2
= hb, a
2
+ a + 1, u 1i
* 2 irreducible components of dim
C
= 0, with total 70 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3u
67
+5u
66
+· · ·+b2, 11u
67
+20u
66
+· · ·+2a9, u
68
+3u
67
+· · ·u1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
12
=
u
u
3
+ u
a
4
=
11
2
u
67
10u
66
+ ··· 2u +
9
2
3u
67
5u
66
+ ··· 11u
2
+ 2
a
6
=
u
2
+ 1
u
4
2u
2
a
3
=
7
2
u
67
6u
66
+ ··· 3u +
5
2
1
2
u
67
+ u
66
+ ··· u
1
2
a
2
=
1
2
u
67
u
66
+ ··· + 8u
1
2
1
2
u
67
+ u
66
+ ··· + 2u
1
2
a
5
=
5
2
u
67
4u
66
+ ··· u +
5
2
6u
67
+ 11u
66
+ ··· u 5
a
11
=
u
3
+ 2u
u
3
+ u
a
9
=
u
6
3u
4
+ 2u
2
+ 1
u
6
2u
4
+ u
2
a
10
=
u
9
+ 4u
7
5u
5
+ 3u
u
9
+ 3u
7
3u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14u
67
+ 19u
66
+ ··· 9u 17
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
68
+ 30u
67
+ ··· 2u + 1
c
2
, c
5
u
68
+ 2u
67
+ ··· + 6u + 1
c
3
u
68
2u
67
+ ··· 36u + 9
c
4
, c
9
u
68
+ u
67
+ ··· 8u 4
c
6
, c
7
, c
12
u
68
3u
67
+ ··· + u 1
c
8
, c
10
, c
11
u
68
+ 15u
67
+ ··· + 152u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
68
+ 18y
67
+ ··· 62y + 1
c
2
, c
5
y
68
+ 30y
67
+ ··· 2y + 1
c
3
y
68
+ 6y
67
+ ··· + 4014y + 81
c
4
, c
9
y
68
15y
67
+ ··· 152y + 16
c
6
, c
7
, c
12
y
68
53y
67
+ ··· 13y + 1
c
8
, c
10
, c
11
y
68
+ 73y
67
+ ··· 2592y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.895522 + 0.351354I
a = 0.535572 0.466640I
b = 0.419390 0.166116I
2.40466 + 3.24426I 12.79487 + 0.I
u = 0.895522 0.351354I
a = 0.535572 + 0.466640I
b = 0.419390 + 0.166116I
2.40466 3.24426I 12.79487 + 0.I
u = 1.030920 + 0.245142I
a = 0.144942 + 0.300433I
b = 0.536018 + 0.056317I
0.929775 0.694625I 0
u = 1.030920 0.245142I
a = 0.144942 0.300433I
b = 0.536018 0.056317I
0.929775 + 0.694625I 0
u = 0.057827 + 0.908622I
a = 1.03946 2.62331I
b = 0.97261 2.56092I
7.88380 10.29650I 4.69943 + 7.27910I
u = 0.057827 0.908622I
a = 1.03946 + 2.62331I
b = 0.97261 + 2.56092I
7.88380 + 10.29650I 4.69943 7.27910I
u = 0.042720 + 0.903115I
a = 0.65870 + 2.72612I
b = 0.70317 + 2.64498I
9.72190 4.90561I 2.02313 + 2.74922I
u = 0.042720 0.903115I
a = 0.65870 2.72612I
b = 0.70317 2.64498I
9.72190 + 4.90561I 2.02313 2.74922I
u = 0.003428 + 0.888270I
a = 0.34321 + 2.84573I
b = 0.00404 + 2.75361I
9.88596 1.57474I 1.66767 + 2.29520I
u = 0.003428 0.888270I
a = 0.34321 2.84573I
b = 0.00404 2.75361I
9.88596 + 1.57474I 1.66767 2.29520I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.013729 + 0.881119I
a = 0.78129 2.82252I
b = 0.31193 2.74554I
8.18285 + 3.81988I 4.00036 2.43227I
u = 0.013729 0.881119I
a = 0.78129 + 2.82252I
b = 0.31193 + 2.74554I
8.18285 3.81988I 4.00036 + 2.43227I
u = 0.040273 + 0.862504I
a = 0.13886 1.98365I
b = 0.31232 2.13385I
4.10183 3.09420I 7.72899 + 2.66205I
u = 0.040273 0.862504I
a = 0.13886 + 1.98365I
b = 0.31232 + 2.13385I
4.10183 + 3.09420I 7.72899 2.66205I
u = 1.186300 + 0.127926I
a = 0.90918 1.24102I
b = 0.436322 0.125183I
2.19445 0.93220I 0
u = 1.186300 0.127926I
a = 0.90918 + 1.24102I
b = 0.436322 + 0.125183I
2.19445 + 0.93220I 0
u = 1.187500 + 0.181105I
a = 0.228112 + 0.140426I
b = 1.199570 + 0.450826I
1.34633 1.22738I 0
u = 1.187500 0.181105I
a = 0.228112 0.140426I
b = 1.199570 0.450826I
1.34633 + 1.22738I 0
u = 1.213540 + 0.182772I
a = 0.391833 + 1.256010I
b = 0.311997 + 0.100144I
1.54755 + 4.00408I 0
u = 1.213540 0.182772I
a = 0.391833 1.256010I
b = 0.311997 0.100144I
1.54755 4.00408I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.247790 + 0.069716I
a = 0.262311 0.505966I
b = 0.81938 1.63973I
4.41264 + 1.01414I 0
u = 1.247790 0.069716I
a = 0.262311 + 0.505966I
b = 0.81938 + 1.63973I
4.41264 1.01414I 0
u = 0.626055 + 0.376261I
a = 0.779550 + 0.334297I
b = 0.620215 0.009222I
3.00525 2.85440I 15.4568 + 5.4193I
u = 0.626055 0.376261I
a = 0.779550 0.334297I
b = 0.620215 + 0.009222I
3.00525 + 2.85440I 15.4568 5.4193I
u = 1.260630 + 0.174920I
a = 0.502698 0.114267I
b = 1.88463 0.84447I
3.25504 5.41820I 0
u = 1.260630 0.174920I
a = 0.502698 + 0.114267I
b = 1.88463 + 0.84447I
3.25504 + 5.41820I 0
u = 0.260329 + 0.674892I
a = 0.059835 1.200510I
b = 0.036602 0.171621I
0.54570 7.12975I 8.28357 + 9.67470I
u = 0.260329 0.674892I
a = 0.059835 + 1.200510I
b = 0.036602 + 0.171621I
0.54570 + 7.12975I 8.28357 9.67470I
u = 1.239520 + 0.401715I
a = 1.098620 0.433220I
b = 0.64232 1.99545I
0.39705 1.43860I 0
u = 1.239520 0.401715I
a = 1.098620 + 0.433220I
b = 0.64232 + 1.99545I
0.39705 + 1.43860I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.232810 + 0.456922I
a = 1.83683 0.03858I
b = 0.38520 2.25306I
4.26036 + 5.42868I 0
u = 1.232810 0.456922I
a = 1.83683 + 0.03858I
b = 0.38520 + 2.25306I
4.26036 5.42868I 0
u = 1.32040
a = 0.354230
b = 0.972963
6.07475 0
u = 1.245710 + 0.445929I
a = 1.76468 + 0.31816I
b = 0.09620 + 2.45581I
6.00508 + 0.09093I 0
u = 1.245710 0.445929I
a = 1.76468 0.31816I
b = 0.09620 2.45581I
6.00508 0.09093I 0
u = 1.313060 + 0.227651I
a = 0.198042 + 0.731027I
b = 0.288228 + 0.423614I
3.29836 + 5.64762I 0
u = 1.313060 0.227651I
a = 0.198042 0.731027I
b = 0.288228 0.423614I
3.29836 5.64762I 0
u = 1.266290 + 0.417661I
a = 1.99000 0.31891I
b = 0.23911 2.26817I
4.29886 + 0.82820I 0
u = 1.266290 0.417661I
a = 1.99000 + 0.31891I
b = 0.23911 + 2.26817I
4.29886 0.82820I 0
u = 1.276200 + 0.421764I
a = 1.50037 + 0.93745I
b = 0.67185 + 2.85731I
5.93444 3.11164I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.276200 0.421764I
a = 1.50037 0.93745I
b = 0.67185 2.85731I
5.93444 + 3.11164I 0
u = 0.194231 + 0.624177I
a = 0.200700 + 0.974073I
b = 0.166804 0.050748I
1.39398 2.63459I 3.83138 + 5.30336I
u = 0.194231 0.624177I
a = 0.200700 0.974073I
b = 0.166804 + 0.050748I
1.39398 + 2.63459I 3.83138 5.30336I
u = 1.281690 + 0.420235I
a = 1.86247 + 0.63495I
b = 0.54582 + 2.40594I
5.89281 + 6.25632I 0
u = 1.281690 0.420235I
a = 1.86247 0.63495I
b = 0.54582 2.40594I
5.89281 6.25632I 0
u = 1.339060 + 0.171690I
a = 0.296922 0.787136I
b = 0.164287 0.826587I
7.45261 + 2.99913I 0
u = 1.339060 0.171690I
a = 0.296922 + 0.787136I
b = 0.164287 + 0.826587I
7.45261 2.99913I 0
u = 1.288500 + 0.412732I
a = 1.35888 1.17047I
b = 1.01417 2.98905I
4.13145 8.45277I 0
u = 1.288500 0.412732I
a = 1.35888 + 1.17047I
b = 1.01417 + 2.98905I
4.13145 + 8.45277I 0
u = 1.305290 + 0.396523I
a = 1.154370 0.714946I
b = 1.13010 1.94509I
0.09743 + 7.61245I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.305290 0.396523I
a = 1.154370 + 0.714946I
b = 1.13010 + 1.94509I
0.09743 7.61245I 0
u = 1.364380 + 0.036473I
a = 0.061668 + 0.259510I
b = 1.252540 + 0.333167I
9.10989 + 3.71218I 0
u = 1.364380 0.036473I
a = 0.061668 0.259510I
b = 1.252540 0.333167I
9.10989 3.71218I 0
u = 1.347280 + 0.239850I
a = 0.322191 0.625658I
b = 0.620089 0.700964I
5.60593 + 10.34200I 0
u = 1.347280 0.239850I
a = 0.322191 + 0.625658I
b = 0.620089 + 0.700964I
5.60593 10.34200I 0
u = 0.352806 + 0.523351I
a = 0.429659 1.178270I
b = 0.416900 0.230397I
2.23370 0.62660I 12.61670 + 3.83528I
u = 0.352806 0.523351I
a = 0.429659 + 1.178270I
b = 0.416900 + 0.230397I
2.23370 + 0.62660I 12.61670 3.83528I
u = 1.313460 + 0.421883I
a = 1.43757 + 1.23124I
b = 1.29435 + 2.56292I
5.48960 + 9.64527I 0
u = 1.313460 0.421883I
a = 1.43757 1.23124I
b = 1.29435 2.56292I
5.48960 9.64527I 0
u = 1.324500 + 0.421925I
a = 1.24973 1.42112I
b = 1.58602 2.58289I
3.5636 + 15.0559I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.324500 0.421925I
a = 1.24973 + 1.42112I
b = 1.58602 + 2.58289I
3.5636 15.0559I 0
u = 0.013858 + 0.538053I
a = 0.93729 + 1.22313I
b = 0.676344 0.109112I
2.08272 1.40752I 0.96646 + 3.79117I
u = 0.013858 0.538053I
a = 0.93729 1.22313I
b = 0.676344 + 0.109112I
2.08272 + 1.40752I 0.96646 3.79117I
u = 0.099088 + 0.477326I
a = 1.27945 1.92708I
b = 0.871503 0.181323I
0.87080 + 3.06361I 3.02049 3.15038I
u = 0.099088 0.477326I
a = 1.27945 + 1.92708I
b = 0.871503 + 0.181323I
0.87080 3.06361I 3.02049 + 3.15038I
u = 0.440851
a = 0.0522081
b = 0.459473
0.831706 11.9310
u = 0.189182 + 0.115386I
a = 0.02171 3.59531I
b = 0.205879 0.531302I
0.30583 1.79467I 2.23312 + 3.53008I
u = 0.189182 0.115386I
a = 0.02171 + 3.59531I
b = 0.205879 + 0.531302I
0.30583 + 1.79467I 2.23312 3.53008I
11
II. I
u
2
= hb, a
2
+ a + 1, u 1i
(i) Arc colorings
a
1
=
0
1
a
8
=
1
0
a
7
=
1
1
a
12
=
1
0
a
4
=
a
0
a
6
=
0
1
a
3
=
a
a
a
2
=
a + 1
a
a
5
=
a
0
a
11
=
1
0
a
9
=
1
0
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a 11
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
5
u
2
u + 1
c
2
u
2
+ u + 1
c
4
, c
8
, c
9
c
10
, c
11
u
2
c
6
, c
7
(u 1)
2
c
12
(u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
y
2
+ y + 1
c
4
, c
8
, c
9
c
10
, c
11
y
2
c
6
, c
7
, c
12
(y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0
1.64493 + 2.02988I 9.00000 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 0
1.64493 2.02988I 9.00000 + 3.46410I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)(u
68
+ 30u
67
+ ··· 2u + 1)
c
2
(u
2
+ u + 1)(u
68
+ 2u
67
+ ··· + 6u + 1)
c
3
(u
2
u + 1)(u
68
2u
67
+ ··· 36u + 9)
c
4
, c
9
u
2
(u
68
+ u
67
+ ··· 8u 4)
c
5
(u
2
u + 1)(u
68
+ 2u
67
+ ··· + 6u + 1)
c
6
, c
7
((u 1)
2
)(u
68
3u
67
+ ··· + u 1)
c
8
, c
10
, c
11
u
2
(u
68
+ 15u
67
+ ··· + 152u + 16)
c
12
((u + 1)
2
)(u
68
3u
67
+ ··· + u 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)(y
68
+ 18y
67
+ ··· 62y + 1)
c
2
, c
5
(y
2
+ y + 1)(y
68
+ 30y
67
+ ··· 2y + 1)
c
3
(y
2
+ y + 1)(y
68
+ 6y
67
+ ··· + 4014y + 81)
c
4
, c
9
y
2
(y
68
15y
67
+ ··· 152y + 16)
c
6
, c
7
, c
12
((y 1)
2
)(y
68
53y
67
+ ··· 13y + 1)
c
8
, c
10
, c
11
y
2
(y
68
+ 73y
67
+ ··· 2592y + 256)
17