12a
0038
(K12a
0038
)
A knot diagram
1
Linearized knot diagam
3 5 6 10 2 1 12 11 4 9 8 7
Solving Sequence
4,9
10 5 11 8 12 7 1 6 3 2
c
9
c
4
c
10
c
8
c
11
c
7
c
12
c
6
c
3
c
2
c
1
, c
5
Ideals for irreducible components
2
of X
par
I
u
1
= hu
35
u
34
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
35
u
34
+ · · · + 2u 1i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
5
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
2
a
8
=
u
4
u
2
+ 1
u
4
a
12
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
7
=
u
8
u
6
+ 3u
4
2u
2
+ 1
u
8
2u
4
a
1
=
u
10
+ u
8
4u
6
+ 3u
4
3u
2
+ 1
u
10
+ 3u
6
+ u
2
a
6
=
u
12
u
10
+ 5u
8
4u
6
+ 6u
4
3u
2
+ 1
u
12
4u
8
3u
4
a
3
=
u
25
2u
23
+ ··· 6u
3
+ u
u
25
+ u
23
+ ··· 3u
5
+ u
a
2
=
u
29
2u
27
+ ··· 8u
3
+ u
u
31
3u
29
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
34
+ 12u
32
4u
31
68u
30
+ 8u
29
+ 160u
28
52u
27
460u
26
+ 88u
25
+ 852u
24
268u
23
1596u
22
+ 376u
21
+ 2304u
20
704u
19
3032u
18
+
800u
17
+ 3316u
16
1020u
15
3092u
14
+ 920u
13
+ 2408u
12
836u
11
1512u
10
+
588u
9
+ 728u
8
372u
7
256u
6
+ 192u
5
+ 48u
4
64u
3
+ 12u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
+ 15u
34
+ ··· + 2u 1
c
2
, c
5
u
35
+ u
34
+ ··· + 4u + 1
c
3
u
35
u
34
+ ··· 8u + 1
c
4
, c
9
u
35
+ u
34
+ ··· + 2u + 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
u
35
+ 5u
34
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
+ 11y
34
+ ··· + 50y 1
c
2
, c
5
y
35
+ 15y
34
+ ··· + 2y 1
c
3
y
35
+ 7y
34
+ ··· 30y 1
c
4
, c
9
y
35
5y
34
+ ··· + 2y 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
35
+ 51y
34
+ ··· + 10y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.827985 + 0.442924I
0.41301 6.75076I 7.52201 + 10.31083I
u = 0.827985 0.442924I
0.41301 + 6.75076I 7.52201 10.31083I
u = 0.819369 + 0.722392I
3.00560 + 2.68433I 6.38966 3.26103I
u = 0.819369 0.722392I
3.00560 2.68433I 6.38966 + 3.26103I
u = 0.748025 + 0.473052I
1.37372 + 2.37460I 2.95509 5.64025I
u = 0.748025 0.473052I
1.37372 2.37460I 2.95509 + 5.64025I
u = 0.781691 + 0.815109I
6.78620 3.64652I 2.24620 + 2.51117I
u = 0.781691 0.815109I
6.78620 + 3.64652I 2.24620 2.51117I
u = 0.812484 + 0.804258I
8.37825 1.52833I 0.15922 + 2.57141I
u = 0.812484 0.804258I
8.37825 + 1.52833I 0.15922 2.57141I
u = 0.876029 + 0.769070I
8.16101 4.25998I 0.39518 + 3.37976I
u = 0.876029 0.769070I
8.16101 + 4.25998I 0.39518 3.37976I
u = 0.899548 + 0.751693I
6.38574 + 9.40965I 3.35814 8.21027I
u = 0.899548 0.751693I
6.38574 9.40965I 3.35814 + 8.21027I
u = 0.764387 + 0.291862I
2.05998 0.57416I 12.32788 + 4.08784I
u = 0.764387 0.291862I
2.05998 + 0.57416I 12.32788 4.08784I
u = 0.796033 + 0.081424I
3.02472 + 3.09558I 15.0272 5.6835I
u = 0.796033 0.081424I
3.02472 3.09558I 15.0272 + 5.6835I
u = 0.569720 + 0.552671I
1.96860 + 1.39447I 0.18894 3.96327I
u = 0.569720 0.552671I
1.96860 1.39447I 0.18894 + 3.96327I
u = 0.446314 + 0.583151I
0.82978 + 3.00776I 2.26446 2.93479I
u = 0.446314 0.583151I
0.82978 3.00776I 2.26446 + 2.93479I
u = 0.954730 + 0.937736I
13.9541 3.4440I 5.66125 + 2.21477I
u = 0.954730 0.937736I
13.9541 + 3.4440I 5.66125 2.21477I
u = 0.947637 + 0.954402I
18.2191 + 3.9502I 2.24732 2.32186I
u = 0.947637 0.954402I
18.2191 3.9502I 2.24732 + 2.32186I
u = 0.953750 + 0.951945I
19.4865 + 1.6085I 0. 2.11449I
u = 0.953750 0.951945I
19.4865 1.6085I 0. + 2.11449I
u = 0.967443 + 0.943280I
19.5330 + 5.3455I 0. 2.28570I
u = 0.967443 0.943280I
19.5330 5.3455I 0. + 2.28570I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.972104 + 0.939042I
18.1363 10.8977I 2.41433 + 6.69442I
u = 0.972104 0.939042I
18.1363 + 10.8977I 2.41433 6.69442I
u = 0.628123
0.861815 11.7130
u = 0.119848 + 0.450363I
0.30459 1.79271I 2.31417 + 3.71994I
u = 0.119848 0.450363I
0.30459 + 1.79271I 2.31417 3.71994I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
35
+ 15u
34
+ ··· + 2u 1
c
2
, c
5
u
35
+ u
34
+ ··· + 4u + 1
c
3
u
35
u
34
+ ··· 8u + 1
c
4
, c
9
u
35
+ u
34
+ ··· + 2u + 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
u
35
+ 5u
34
+ ··· + 2u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
35
+ 11y
34
+ ··· + 50y 1
c
2
, c
5
y
35
+ 15y
34
+ ··· + 2y 1
c
3
y
35
+ 7y
34
+ ··· 30y 1
c
4
, c
9
y
35
5y
34
+ ··· + 2y 1
c
6
, c
7
, c
8
c
10
, c
11
, c
12
y
35
+ 51y
34
+ ··· + 10y 1
8