12a
0044
(K12a
0044
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 9 4 11 6 12 8 1 10
Solving Sequence
3,7 4,11
8 6 9 5 2 1 10 12
c
3
c
7
c
6
c
8
c
5
c
2
c
1
c
10
c
12
c
4
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−84627704u
20
128973875u
19
+ ··· + 51452411b 272407188, a 1, u
21
+ u
20
+ ··· + 4u 1i
I
u
2
= h5.22206 × 10
409
u
113
+ 1.42485 × 10
410
u
112
+ ··· + 5.53920 × 10
411
b + 3.35281 × 10
412
,
1.67844 × 10
410
u
113
6.46598 × 10
410
u
112
+ ··· + 1.10784 × 10
412
a + 1.29452 × 10
413
,
u
114
+ 4u
113
+ ··· 9216u 512i
I
u
3
= h−u
8
2u
7
4u
6
4u
5
6u
4
5u
3
6u
2
+ b 3u 3, a, u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1i
I
u
4
= hu
2
+ b + 2, a + 1, u
3
u
2
+ 2u 1i
I
u
5
= h−2au + b + 2u 1, u
2
a + a
2
au + 3u
2
+ a u + 5, u
3
u
2
+ 2u 1i
I
v
1
= ha, 4v
8
372v
7
2334v
6
5550v
5
4357v
4
+ 2618v
3
+ 3887v
2
+ 683b 3400v 4863,
v
9
+ 7v
8
+ 20v
7
+ 25v
6
+ 5v
5
15v
4
+ 22v
2
+ 13v 1i
* 6 irreducible components of dim
C
= 0, with total 162 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8.46 × 10
7
u
20
1.29 × 10
8
u
19
+ · · · + 5.15 × 10
7
b 2.72 × 10
8
, a
1, u
21
+ u
20
+ · · · + 4u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
1.64478u
20
+ 2.50666u
19
+ ··· 5.18329u + 5.29435
a
8
=
u
0.861887u
20
0.812044u
19
+ ··· + 2.28475u 1.64478
a
6
=
u
u
3
+ u
a
9
=
0.192548u
20
0.0736292u
19
+ ··· 2.06126u + 0.0498433
0.603909u
20
0.670769u
19
+ ··· + 2.48075u 1.86111
a
5
=
0.265940u
20
+ 0.118547u
19
+ ··· + 2.50924u 0.0261450
0.310547u
20
+ 0.573803u
19
+ ··· 1.29066u + 1.04156
a
2
=
0.265940u
20
+ 0.118547u
19
+ ··· + 2.50924u 0.0261450
0.276831u
20
0.685016u
19
+ ··· 0.513226u 0.657077
a
1
=
0.542770u
20
0.566469u
19
+ ··· + 1.99601u 0.683222
0.276831u
20
0.685016u
19
+ ··· 0.513226u 0.657077
a
10
=
u
2
+ 1
1.59493u
20
+ 2.26427u
19
+ ··· 6.98606u + 6.15624
a
12
=
0.293060u
20
0.196829u
19
+ ··· 0.0371231u + 0.621597
1.30711u
20
+ 1.61748u
19
+ ··· 6.43899u + 4.90053
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1476285438
51452411
u
20
1893823898
51452411
u
19
+ ··· +
5145089090
51452411
u
4384281402
51452411
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
21
+ 11u
20
+ ··· 4u + 1
c
2
, c
4
, c
9
c
12
u
21
3u
20
+ ··· 2u + 1
c
3
, c
6
, c
7
c
10
u
21
u
20
+ ··· + 4u + 1
c
5
, c
8
u
21
+ 7u
20
+ ··· 24u 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
21
+ y
20
+ ··· + 60y 1
c
2
, c
4
, c
9
c
12
y
21
11y
20
+ ··· 4y 1
c
3
, c
6
, c
7
c
10
y
21
+ 9y
20
+ ··· + 4y 1
c
5
, c
8
y
21
+ 7y
20
+ ··· + 384y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.654628 + 0.778929I
a = 1.00000
b = 0.301139 1.121240I
6.57363 + 8.18913I 13.0291 11.3346I
u = 0.654628 0.778929I
a = 1.00000
b = 0.301139 + 1.121240I
6.57363 8.18913I 13.0291 + 11.3346I
u = 0.448527 + 0.840581I
a = 1.00000
b = 2.61918 0.41086I
5.92018 + 0.83164I 11.63192 4.49260I
u = 0.448527 0.840581I
a = 1.00000
b = 2.61918 + 0.41086I
5.92018 0.83164I 11.63192 + 4.49260I
u = 1.041870 + 0.475093I
a = 1.00000
b = 1.97284 0.75695I
4.35380 5.94110I 11.79339 + 6.03278I
u = 1.041870 0.475093I
a = 1.00000
b = 1.97284 + 0.75695I
4.35380 + 5.94110I 11.79339 6.03278I
u = 0.752000 + 0.272051I
a = 1.00000
b = 2.06444 + 1.49682I
2.27847 + 1.35735I 12.26664 3.16411I
u = 0.752000 0.272051I
a = 1.00000
b = 2.06444 1.49682I
2.27847 1.35735I 12.26664 + 3.16411I
u = 0.148758 + 0.737388I
a = 1.00000
b = 0.679107 + 0.183414I
0.94396 2.98921I 0.51194 + 9.40250I
u = 0.148758 0.737388I
a = 1.00000
b = 0.679107 0.183414I
0.94396 + 2.98921I 0.51194 9.40250I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.371460 + 1.226140I
a = 1.00000
b = 0.88921 1.56579I
6.79620 + 1.15294I 1.115456 + 0.635021I
u = 0.371460 1.226140I
a = 1.00000
b = 0.88921 + 1.56579I
6.79620 1.15294I 1.115456 0.635021I
u = 0.507858 + 0.499877I
a = 1.00000
b = 0.321354 + 0.105246I
0.56389 1.48786I 4.78639 + 4.72577I
u = 0.507858 0.499877I
a = 1.00000
b = 0.321354 0.105246I
0.56389 + 1.48786I 4.78639 4.72577I
u = 0.663991 + 1.165250I
a = 1.00000
b = 1.13756 + 2.28315I
2.55725 12.07520I 7.44072 + 8.70390I
u = 0.663991 1.165250I
a = 1.00000
b = 1.13756 2.28315I
2.55725 + 12.07520I 7.44072 8.70390I
u = 0.525082 + 1.301340I
a = 1.00000
b = 1.23361 + 1.22991I
5.42762 7.34188I 2.93735 + 4.03622I
u = 0.525082 1.301340I
a = 1.00000
b = 1.23361 1.22991I
5.42762 + 7.34188I 2.93735 4.03622I
u = 0.75692 + 1.26041I
a = 1.00000
b = 1.65886 1.96882I
0.4705 + 19.1772I 8.57373 11.20098I
u = 0.75692 1.26041I
a = 1.00000
b = 1.65886 + 1.96882I
0.4705 19.1772I 8.57373 + 11.20098I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.351418
a = 1.00000
b = 4.96186
2.88079 73.8270
7
II. I
u
2
= h5.22 × 10
409
u
113
+ 1.42 × 10
410
u
112
+ · · · + 5.54 × 10
411
b + 3.35 ×
10
412
, 1.68 × 10
410
u
113
6.47 × 10
410
u
112
+ · · · + 1.11 × 10
412
a + 1.29 ×
10
413
, u
114
+ 4u
113
+ · · · 9216u 512i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
0.0151506u
113
+ 0.0583657u
112
+ ··· 71.2863u 11.6851
0.00942747u
113
0.0257230u
112
+ ··· 85.0764u 6.05288
a
8
=
0.00640765u
113
+ 0.0482909u
112
+ ··· 348.071u 16.0079
0.0200164u
113
0.0770575u
112
+ ··· + 160.460u + 8.88052
a
6
=
u
u
3
+ u
a
9
=
0.0236246u
113
+ 0.116816u
112
+ ··· 519.094u 25.3276
0.0133962u
113
0.0432854u
112
+ ··· 4.90955u 0.614850
a
5
=
0.00304677u
113
0.0105289u
112
+ ··· 11.0996u + 0.184583
0.0000978210u
113
0.00258173u
112
+ ··· + 28.5323u + 1.65333
a
2
=
0.00304677u
113
0.0105289u
112
+ ··· 11.0996u + 0.184583
0.00182149u
113
+ 0.00762875u
112
+ ··· 14.8107u 0.804353
a
1
=
0.00122528u
113
0.00290018u
112
+ ··· 25.9103u 0.619770
0.00182149u
113
+ 0.00762875u
112
+ ··· 14.8107u 0.804353
a
10
=
0.00828771u
113
0.0146138u
112
+ ··· 171.414u 21.2570
0.0134184u
113
0.0492643u
112
+ ··· + 101.594u + 4.68353
a
12
=
0.0205689u
113
+ 0.112245u
112
+ ··· 615.942u 42.6036
0.0227900u
113
0.0797952u
112
+ ··· + 70.9865u + 2.43153
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0149552u
113
0.0815478u
112
+ ··· + 396.932u + 14.1706
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
114
+ 53u
113
+ ··· + 60814u + 1
c
2
, c
4
, c
9
c
12
u
114
11u
113
+ ··· + 244u + 1
c
3
, c
6
, c
7
c
10
u
114
4u
113
+ ··· + 9216u 512
c
5
, c
8
(u
57
2u
56
+ ··· 28u + 8)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
114
+ 27y
113
+ ··· 3695912450y + 1
c
2
, c
4
, c
9
c
12
y
114
53y
113
+ ··· 60814y + 1
c
3
, c
6
, c
7
c
10
y
114
+ 60y
113
+ ··· 63963136y + 262144
c
5
, c
8
(y
57
+ 28y
56
+ ··· + 976y 64)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.378129 + 0.927561I
a = 0.095736 + 1.080570I
b = 0.328302 + 0.445998I
5.22774 + 3.33747I 0
u = 0.378129 0.927561I
a = 0.095736 1.080570I
b = 0.328302 0.445998I
5.22774 3.33747I 0
u = 0.451577 + 0.889017I
a = 1.012040 0.571682I
b = 0.539472 + 1.090330I
2.71251 + 4.62043I 0
u = 0.451577 0.889017I
a = 1.012040 + 0.571682I
b = 0.539472 1.090330I
2.71251 4.62043I 0
u = 0.970693 + 0.323388I
a = 0.120545 + 1.128560I
b = 1.17594 + 0.89067I
2.00680 + 0.99841I 0
u = 0.970693 0.323388I
a = 0.120545 1.128560I
b = 1.17594 0.89067I
2.00680 0.99841I 0
u = 0.452424 + 0.843604I
a = 0.553257 0.833010I
b = 1.24519
0.0831767 0
u = 0.452424 0.843604I
a = 0.553257 + 0.833010I
b = 1.24519
0.0831767 0
u = 0.847621 + 0.438436I
a = 0.938703 0.312693I
b = 1.71537 0.03530I
2.88934 1.48893I 0
u = 0.847621 0.438436I
a = 0.938703 + 0.312693I
b = 1.71537 + 0.03530I
2.88934 + 1.48893I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.940806 + 0.478051I
a = 0.056741 1.201070I
b = 1.73261 0.98404I
0.39261 + 6.15931I 0
u = 0.940806 0.478051I
a = 0.056741 + 1.201070I
b = 1.73261 + 0.98404I
0.39261 6.15931I 0
u = 0.932761 + 0.146516I
a = 0.958897 0.319420I
b = 1.71537 + 0.03530I
2.88934 + 1.48893I 0
u = 0.932761 0.146516I
a = 0.958897 + 0.319420I
b = 1.71537 0.03530I
2.88934 1.48893I 0
u = 0.274548 + 1.020150I
a = 1.168810 0.169782I
b = 1.82379 + 0.42850I
0.72077 + 3.96419I 0
u = 0.274548 1.020150I
a = 1.168810 + 0.169782I
b = 1.82379 0.42850I
0.72077 3.96419I 0
u = 0.966092 + 0.497395I
a = 0.081353 + 0.918231I
b = 0.328302 0.445998I
5.22774 3.33747I 0
u = 0.966092 0.497395I
a = 0.081353 0.918231I
b = 0.328302 + 0.445998I
5.22774 + 3.33747I 0
u = 1.091000 + 0.041803I
a = 0.319454 1.036770I
b = 0.531188 0.668667I
1.42672 + 1.76217I 0
u = 1.091000 0.041803I
a = 0.319454 + 1.036770I
b = 0.531188 + 0.668667I
1.42672 1.76217I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.435064 + 0.778638I
a = 1.339470 + 0.178918I
b = 1.75566 + 1.76606I
0.28156 3.75363I 8.00000 + 5.48916I
u = 0.435064 0.778638I
a = 1.339470 0.178918I
b = 1.75566 1.76606I
0.28156 + 3.75363I 8.00000 5.48916I
u = 0.405963 + 0.790427I
a = 0.559904 + 1.232660I
b = 0.522462 0.855107I
6.11667 + 2.79727I 8.00000 5.24994I
u = 0.405963 0.790427I
a = 0.559904 1.232660I
b = 0.522462 + 0.855107I
6.11667 2.79727I 8.00000 + 5.24994I
u = 0.861996 + 0.131943I
a = 0.25986 1.45863I
b = 0.67289 1.32552I
2.57214 2.93898I 5.24430 + 8.01628I
u = 0.861996 0.131943I
a = 0.25986 + 1.45863I
b = 0.67289 + 1.32552I
2.57214 + 2.93898I 5.24430 8.01628I
u = 0.113238 + 1.125090I
a = 0.714068 0.092339I
b = 1.85448 + 1.17635I
0.91644 1.21025I 0
u = 0.113238 1.125090I
a = 0.714068 + 0.092339I
b = 1.85448 1.17635I
0.91644 + 1.21025I 0
u = 0.965247 + 0.641559I
a = 0.749081 0.423143I
b = 0.539472 1.090330I
2.71251 4.62043I 0
u = 0.965247 0.641559I
a = 0.749081 + 0.423143I
b = 0.539472 + 1.090330I
2.71251 + 4.62043I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.247950 + 1.134470I
a = 0.093578 0.876090I
b = 1.17594 + 0.89067I
2.00680 + 0.99841I 0
u = 0.247950 1.134470I
a = 0.093578 + 0.876090I
b = 1.17594 0.89067I
2.00680 0.99841I 0
u = 0.353816 + 1.115940I
a = 1.125470 + 0.246163I
b = 1.72422 0.87401I
3.08563 + 9.35831I 0
u = 0.353816 1.115940I
a = 1.125470 0.246163I
b = 1.72422 + 0.87401I
3.08563 9.35831I 0
u = 0.135138 + 1.162980I
a = 1.173600 0.503314I
b = 0.394880 + 0.599648I
6.31677 + 3.78842I 0
u = 0.135138 1.162980I
a = 1.173600 + 0.503314I
b = 0.394880 0.599648I
6.31677 3.78842I 0
u = 0.258009 + 1.148030I
a = 0.065708 + 0.507725I
b = 0.608537 1.186480I
2.11375 2.54354I 0
u = 0.258009 1.148030I
a = 0.065708 0.507725I
b = 0.608537 + 1.186480I
2.11375 + 2.54354I 0
u = 0.775698 + 0.270746I
a = 0.315732 + 0.938237I
b = 0.645088 0.860304I
3.38914 0.67754I 11.03837 0.57218I
u = 0.775698 0.270746I
a = 0.315732 0.938237I
b = 0.645088 + 0.860304I
3.38914 + 0.67754I 11.03837 + 0.57218I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.342433 + 0.746014I
a = 1.35153 + 0.66467I
b = 0.477401 1.153940I
5.85242 0.17004I 10.50922 4.42750I
u = 0.342433 0.746014I
a = 1.35153 0.66467I
b = 0.477401 + 1.153940I
5.85242 + 0.17004I 10.50922 + 4.42750I
u = 0.391866 + 1.117770I
a = 0.271428 0.880901I
b = 0.531188 + 0.668667I
1.42672 1.76217I 0
u = 0.391866 1.117770I
a = 0.271428 + 0.880901I
b = 0.531188 0.668667I
1.42672 + 1.76217I 0
u = 0.184750 + 0.792934I
a = 1.377390 0.178116I
b = 1.85448 1.17635I
0.91644 + 1.21025I 2.66130 1.26504I
u = 0.184750 0.792934I
a = 1.377390 + 0.178116I
b = 1.85448 + 1.17635I
0.91644 1.21025I 2.66130 + 1.26504I
u = 0.498937 + 0.642305I
a = 0.322183 0.957409I
b = 0.645088 0.860304I
3.38914 0.67754I 11.03837 0.57218I
u = 0.498937 0.642305I
a = 0.322183 + 0.957409I
b = 0.645088 + 0.860304I
3.38914 + 0.67754I 11.03837 + 0.57218I
u = 1.177850 + 0.158092I
a = 0.386060 + 1.031110I
b = 1.21846 + 0.73693I
0.66955 + 6.99715I 0
u = 1.177850 0.158092I
a = 0.386060 1.031110I
b = 1.21846 0.73693I
0.66955 6.99715I 0
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.121580 + 0.420524I
a = 0.054160 1.102670I
b = 0.993470 0.568490I
0.38987 6.64143I 0
u = 1.121580 0.420524I
a = 0.054160 + 1.102670I
b = 0.993470 + 0.568490I
0.38987 + 6.64143I 0
u = 0.747029 + 0.942978I
a = 0.305466 + 0.672503I
b = 0.522462 + 0.855107I
6.11667 2.79727I 0
u = 0.747029 0.942978I
a = 0.305466 0.672503I
b = 0.522462 0.855107I
6.11667 + 2.79727I 0
u = 0.443441 + 1.120800I
a = 0.733479 0.097974I
b = 1.75566 + 1.76606I
0.28156 3.75363I 0
u = 0.443441 1.120800I
a = 0.733479 + 0.097974I
b = 1.75566 1.76606I
0.28156 + 3.75363I 0
u = 0.437125 + 1.155790I
a = 1.049980 0.697534I
b = 0.0289154 0.0801418I
5.11807 + 1.34577I 0
u = 0.437125 1.155790I
a = 1.049980 + 0.697534I
b = 0.0289154 + 0.0801418I
5.11807 1.34577I 0
u = 0.958661 + 0.780654I
a = 0.595803 0.293011I
b = 0.477401 1.153940I
5.85242 0.17004I 0
u = 0.958661 0.780654I
a = 0.595803 + 0.293011I
b = 0.477401 + 1.153940I
5.85242 + 0.17004I 0
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.474338 + 1.144020I
a = 1.096510 0.064026I
b = 1.02854 + 1.94274I
4.87423 + 6.70670I 0
u = 0.474338 1.144020I
a = 1.096510 + 0.064026I
b = 1.02854 1.94274I
4.87423 6.70670I 0
u = 0.786568 + 0.959161I
a = 0.330534 + 0.513610I
b = 0.526269 + 0.568826I
1.75595 1.61826I 0
u = 0.786568 0.959161I
a = 0.330534 0.513610I
b = 0.526269 0.568826I
1.75595 + 1.61826I 0
u = 0.232648 + 0.721025I
a = 0.88604 1.37679I
b = 0.526269 + 0.568826I
1.75595 1.61826I 5.03383 2.66235I
u = 0.232648 0.721025I
a = 0.88604 + 1.37679I
b = 0.526269 0.568826I
1.75595 + 1.61826I 5.03383 + 2.66235I
u = 0.245927 + 1.219920I
a = 1.120700 + 0.336396I
b = 0.532169 0.140359I
7.34550 2.45066I 0
u = 0.245927 1.219920I
a = 1.120700 0.336396I
b = 0.532169 + 0.140359I
7.34550 + 2.45066I 0
u = 0.494096 + 1.145740I
a = 0.837894 0.121713I
b = 1.82379 0.42850I
0.72077 3.96419I 0
u = 0.494096 1.145740I
a = 0.837894 + 0.121713I
b = 1.82379 + 0.42850I
0.72077 + 3.96419I 0
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.520791 + 1.157100I
a = 0.039246 0.830736I
b = 1.73261 + 0.98404I
0.39261 6.15931I 0
u = 0.520791 1.157100I
a = 0.039246 + 0.830736I
b = 1.73261 0.98404I
0.39261 + 6.15931I 0
u = 1.183100 + 0.486590I
a = 0.145098 + 1.077200I
b = 1.56639 + 0.48932I
2.02455 12.24910I 0
u = 1.183100 0.486590I
a = 0.145098 1.077200I
b = 1.56639 0.48932I
2.02455 + 12.24910I 0
u = 0.788592 + 1.007410I
a = 0.229654 + 0.436834I
b = 0.674394 + 0.466433I
5.07109 + 6.54642I 0
u = 0.788592 1.007410I
a = 0.229654 0.436834I
b = 0.674394 0.466433I
5.07109 6.54642I 0
u = 0.031547 + 1.291620I
a = 0.118383 + 0.664486I
b = 0.67289 1.32552I
2.57214 2.93898I 0
u = 0.031547 1.291620I
a = 0.118383 0.664486I
b = 0.67289 + 1.32552I
2.57214 + 2.93898I 0
u = 0.508892 + 1.204970I
a = 1.066370 + 0.490251I
b = 0.355539 + 0.508325I
5.81781 + 7.86530I 0
u = 0.508892 1.204970I
a = 1.066370 0.490251I
b = 0.355539 0.508325I
5.81781 7.86530I 0
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.617731 + 1.153460I
a = 0.318470 0.850588I
b = 1.21846 + 0.73693I
0.66955 + 6.99715I 0
u = 0.617731 1.153460I
a = 0.318470 + 0.850588I
b = 1.21846 0.73693I
0.66955 6.99715I 0
u = 0.524446 + 1.213960I
a = 0.044437 + 0.904704I
b = 0.993470 0.568490I
0.38987 6.64143I 0
u = 0.524446 1.213960I
a = 0.044437 0.904704I
b = 0.993470 + 0.568490I
0.38987 + 6.64143I 0
u = 0.274368 + 1.311570I
a = 0.151842 + 0.453578I
b = 1.26882 2.03678I
1.99622 2.68142I 0
u = 0.274368 1.311570I
a = 0.151842 0.453578I
b = 1.26882 + 2.03678I
1.99622 + 2.68142I 0
u = 0.672912 + 1.168860I
a = 0.847954 0.185465I
b = 1.72422 0.87401I
3.08563 + 9.35831I 0
u = 0.672912 1.168860I
a = 0.847954 + 0.185465I
b = 1.72422 + 0.87401I
3.08563 9.35831I 0
u = 0.636558 + 0.074703I
a = 0.66368 + 1.98252I
b = 1.26882 + 2.03678I
1.99622 + 2.68142I 6.1768 + 16.3931I
u = 0.636558 0.074703I
a = 0.66368 1.98252I
b = 1.26882 2.03678I
1.99622 2.68142I 6.1768 16.3931I
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.593362 + 1.224050I
a = 0.908888 0.053071I
b = 1.02854 1.94274I
4.87423 6.70670I 0
u = 0.593362 1.224050I
a = 0.908888 + 0.053071I
b = 1.02854 + 1.94274I
4.87423 + 6.70670I 0
u = 0.258965 + 0.575839I
a = 0.94289 + 1.79350I
b = 0.674394 0.466433I
5.07109 6.54642I 7.01072 2.60029I
u = 0.258965 0.575839I
a = 0.94289 1.79350I
b = 0.674394 + 0.466433I
5.07109 + 6.54642I 7.01072 + 2.60029I
u = 0.695822 + 1.203830I
a = 0.122817 + 0.911787I
b = 1.56639 0.48932I
2.02455 + 12.24910I 0
u = 0.695822 1.203830I
a = 0.122817 0.911787I
b = 1.56639 + 0.48932I
2.02455 12.24910I 0
u = 0.565931 + 0.206433I
a = 0.25070 1.93713I
b = 0.608537 1.186480I
2.11375 2.54354I 0.09108 + 1.48335I
u = 0.565931 0.206433I
a = 0.25070 + 1.93713I
b = 0.608537 + 1.186480I
2.11375 + 2.54354I 0.09108 1.48335I
u = 0.70600 + 1.25571I
a = 1.003890 + 0.086046I
b = 1.41732 + 1.65047I
3.05680 + 13.20750I 0
u = 0.70600 1.25571I
a = 1.003890 0.086046I
b = 1.41732 1.65047I
3.05680 13.20750I 0
20
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.60069 + 1.32134I
a = 0.988863 + 0.084758I
b = 1.41732 1.65047I
3.05680 13.20750I 0
u = 0.60069 1.32134I
a = 0.988863 0.084758I
b = 1.41732 + 1.65047I
3.05680 + 13.20750I 0
u = 0.13477 + 1.44989I
a = 0.818549 0.245701I
b = 0.532169 0.140359I
7.34550 2.45066I 0
u = 0.13477 1.44989I
a = 0.818549 + 0.245701I
b = 0.532169 + 0.140359I
7.34550 + 2.45066I 0
u = 0.518627
a = 0.122794
b = 0.674449
1.19406 8.42600
u = 0.42674 + 1.43289I
a = 0.719708 0.308657I
b = 0.394880 0.599648I
6.31677 3.78842I 0
u = 0.42674 1.43289I
a = 0.719708 + 0.308657I
b = 0.394880 + 0.599648I
6.31677 + 3.78842I 0
u = 0.04807 + 1.53442I
a = 0.774142 + 0.355904I
b = 0.355539 0.508325I
5.81781 7.86530I 0
u = 0.04807 1.53442I
a = 0.774142 0.355904I
b = 0.355539 + 0.508325I
5.81781 + 7.86530I 0
u = 0.34723 + 1.51846I
a = 0.660775 + 0.438973I
b = 0.0289154 0.0801418I
5.11807 + 1.34577I 0
21
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.34723 1.51846I
a = 0.660775 0.438973I
b = 0.0289154 + 0.0801418I
5.11807 1.34577I 0
u = 0.366123 + 0.098479I
a = 0.865065 0.501660I
b = 4.46804
2.88161 57.8315 + 0.I
u = 0.366123 0.098479I
a = 0.865065 + 0.501660I
b = 4.46804
2.88161 57.8315 + 0.I
u = 0.0636841
a = 8.14374
b = 0.674449
1.19406 8.42600
22
III.
I
u
3
= h−u
8
2u
7
+ · · · + b 3, a, u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
0
u
8
+ 2u
7
+ 4u
6
+ 4u
5
+ 6u
4
+ 5u
3
+ 6u
2
+ 3u + 3
a
8
=
0
u
a
6
=
u
u
3
+ u
a
9
=
u
3
u
5
+ u
3
+ u
a
5
=
u
5
+ u
u
7
+ u
5
+ 2u
3
+ u
a
2
=
u
5
+ u
u
5
u
3
u
a
1
=
u
3
u
5
u
3
u
a
10
=
0
u
8
+ 2u
7
+ 4u
6
+ 4u
5
+ 6u
4
+ 5u
3
+ 6u
2
+ 3u + 3
a
12
=
u
3
u
8
+ 2u
7
+ 4u
6
+ 3u
5
+ 6u
4
+ 4u
3
+ 6u
2
+ 2u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 45u
8
+ 63u
7
+ 119u
6
+ 104u
5
+ 184u
4
+ 133u
3
+ 157u
2
+ 83u + 73
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
2
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
3
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
4
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
5
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
6
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
7
, c
10
u
9
c
8
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
9
, c
11
(u 1)
9
c
12
(u + 1)
9
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
2
, c
4
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
3
, c
6
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
5
, c
8
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
10
y
9
c
9
, c
11
, c
12
(y 1)
9
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 0
b = 0.449406 + 0.973624I
0.13850 2.09337I 6.65973 + 4.50528I
u = 0.140343 0.966856I
a = 0
b = 0.449406 0.973624I
0.13850 + 2.09337I 6.65973 4.50528I
u = 0.628449 + 0.875112I
a = 0
b = 0.764470 0.234457I
2.26187 2.45442I 9.69685 + 4.13179I
u = 0.628449 0.875112I
a = 0
b = 0.764470 + 0.234457I
2.26187 + 2.45442I 9.69685 4.13179I
u = 0.796005 + 0.733148I
a = 0
b = 0.485105 0.622283I
6.01628 1.33617I 13.00050 + 1.13735I
u = 0.796005 0.733148I
a = 0
b = 0.485105 + 0.622283I
6.01628 + 1.33617I 13.00050 1.13735I
u = 0.728966 + 0.986295I
a = 0
b = 0.511281 0.180088I
5.24306 + 7.08493I 11.6081 10.4867I
u = 0.728966 0.986295I
a = 0
b = 0.511281 + 0.180088I
5.24306 7.08493I 11.6081 + 10.4867I
u = 0.512358
a = 0
b = 7.43498
2.84338 193.930
26
IV. I
u
4
= hu
2
+ b + 2, a + 1, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
1
u
2
2
a
8
=
u
u
2
+ u 1
a
6
=
u
u
2
u + 1
a
9
=
u
u
2
+ u 1
a
5
=
u
u
2
u + 1
a
2
=
u
u
a
1
=
0
u
a
10
=
u
2
1
u
2
+ u 3
a
12
=
1
2u
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 8u 20
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
11
u
3
u
2
+ 2u 1
c
2
, c
9
u
3
+ u
2
1
c
4
, c
12
u
3
u
2
+ 1
c
5
, c
8
u
3
c
6
, c
10
u
3
+ u
2
+ 2u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
11
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
, c
9
c
12
y
3
y
2
+ 2y 1
c
5
, c
8
y
3
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.00000
b = 0.337641 0.562280I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.215080 1.307140I
a = 1.00000
b = 0.337641 + 0.562280I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.569840
a = 1.00000
b = 2.32472
2.22691 18.0390
30
V.
I
u
5
= h−2au + b + 2u 1, u
2
a + a
2
au + 3u
2
+ a u + 5, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
11
=
a
2au 2u + 1
a
8
=
au + 2u
2
+ a u + 3
au + 2u
2
u + 4
a
6
=
u
u
2
u + 1
a
9
=
au + 2u
2
+ a u + 3
au + 2u
2
u + 4
a
5
=
u
u
2
u + 1
a
2
=
u
u
a
1
=
0
u
a
10
=
au + u
2
+ 1
2u
2
a + 3au + u
2
2a 3u + 3
a
12
=
a
u
2
a + 2au 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 19u
2
a 5au + 5u 39
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
7
c
11
(u
3
u
2
+ 2u 1)
2
c
2
, c
9
(u
3
+ u
2
1)
2
c
4
, c
12
(u
3
u
2
+ 1)
2
c
5
, c
8
u
6
c
6
, c
10
(u
3
+ u
2
+ 2u + 1)
2
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
, c
9
c
12
(y
3
y
2
+ 2y 1)
2
c
5
, c
8
y
6
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.947279 + 0.320410I
b = 0.139681
6.04826 3.50653 + 0.I
u = 0.215080 + 1.307140I
a = 0.069840 + 0.424452I
b = 0.56984 2.61428I
1.91067 2.82812I 32.7467 + 20.6881I
u = 0.215080 1.307140I
a = 0.947279 0.320410I
b = 0.139681
6.04826 3.50653 + 0.I
u = 0.215080 1.307140I
a = 0.069840 0.424452I
b = 0.56984 + 2.61428I
1.91067 + 2.82812I 32.7467 20.6881I
u = 0.569840
a = 0.37744 + 2.29387I
b = 0.56984 + 2.61428I
1.91067 + 2.82812I 32.7467 20.6881I
u = 0.569840
a = 0.37744 2.29387I
b = 0.56984 2.61428I
1.91067 2.82812I 32.7467 + 20.6881I
34
VI. I
v
1
= ha, 4v
8
372v
7
+ · · · + 683b 4863, v
9
+ 7v
8
+ · · · + 13v 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
v
0
a
4
=
1
0
a
11
=
0
0.00585652v
8
+ 0.544656v
7
+ ··· + 4.97804v + 7.12006
a
8
=
v
0.595900v
8
+ 3.58126v
7
+ ··· + 7.48463v + 3.28404
a
6
=
v
0
a
9
=
1.00439v
8
+ 5.59151v
7
+ ··· + 9.26647v 0.590044
0.595900v
8
+ 3.58126v
7
+ ··· + 7.48463v + 3.28404
a
5
=
1.00439v
8
+ 5.59151v
7
+ ··· + 9.26647v 0.590044
1
a
2
=
1.00439v
8
5.59151v
7
+ ··· 9.26647v + 1.59004
1
a
1
=
1.00439v
8
5.59151v
7
+ ··· 9.26647v + 0.590044
1
a
10
=
0.565154v
8
3.44070v
7
+ ··· 7.61933v + 0.585652
0.0527086v
8
+ 1.09810v
7
+ ··· + 7.19766v + 8.91947
a
12
=
1.43924v
8
8.15081v
7
+ ··· 14.6471v + 1.00439
0.169839v
8
0.204978v
7
+ ··· + 4.36310v + 6.48170
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
9459
683
v
8
+
66268
683
v
7
+
189529
683
v
6
+
238191
683
v
5
+
51918
683
v
4
136738
683
v
3
1226
683
v
2
+
202294
683
v +
118563
683
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
7
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
8
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
9
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
10
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
11
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
12
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
, c
8
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
9
, c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
11
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.763784 + 0.496693I
a = 0
b = 0.449406 0.973624I
0.13850 + 2.09337I 6.65973 4.50528I
v = 0.763784 0.496693I
a = 0
b = 0.449406 + 0.973624I
0.13850 2.09337I 6.65973 + 4.50528I
v = 1.072290 + 0.815867I
a = 0
b = 0.764470 + 0.234457I
2.26187 + 2.45442I 9.69685 4.13179I
v = 1.072290 0.815867I
a = 0
b = 0.764470 0.234457I
2.26187 2.45442I 9.69685 + 4.13179I
v = 1.353070 + 0.224375I
a = 0
b = 0.485105 + 0.622283I
6.01628 + 1.33617I 13.00050 1.13735I
v = 1.353070 0.224375I
a = 0
b = 0.485105 0.622283I
6.01628 1.33617I 13.00050 + 1.13735I
v = 0.0689118
a = 0
b = 7.43498
2.84338 193.930
v = 1.87288 + 1.26938I
a = 0
b = 0.511281 0.180088I
5.24306 + 7.08493I 11.6081 10.4867I
v = 1.87288 1.26938I
a = 0
b = 0.511281 + 0.180088I
5.24306 7.08493I 11.6081 + 10.4867I
38
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
(u 1)
9
(u
3
u
2
+ 2u 1)
3
· (u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
21
+ 11u
20
+ ··· 4u + 1)(u
114
+ 53u
113
+ ··· + 60814u + 1)
c
2
, c
9
(u 1)
9
(u
3
+ u
2
1)
3
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
21
3u
20
+ ··· 2u + 1)(u
114
11u
113
+ ··· + 244u + 1)
c
3
, c
7
u
9
(u
3
u
2
+ 2u 1)
3
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
21
u
20
+ ··· + 4u + 1)(u
114
4u
113
+ ··· + 9216u 512)
c
4
, c
12
(u + 1)
9
(u
3
u
2
+ 1)
3
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
21
3u
20
+ ··· 2u + 1)(u
114
11u
113
+ ··· + 244u + 1)
c
5
u
9
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
2
· (u
21
+ 7u
20
+ ··· 24u 8)(u
57
2u
56
+ ··· 28u + 8)
2
c
6
, c
10
u
9
(u
3
+ u
2
+ 2u + 1)
3
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
21
u
20
+ ··· + 4u + 1)(u
114
4u
113
+ ··· + 9216u 512)
c
8
u
9
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
2
· (u
21
+ 7u
20
+ ··· 24u 8)(u
57
2u
56
+ ··· 28u + 8)
2
39
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y 1)
9
(y
3
+ 3y
2
+ 2y 1)
3
· (y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
21
+ y
20
+ ··· + 60y 1)(y
114
+ 27y
113
+ ··· 3695912450y + 1)
c
2
, c
4
, c
9
c
12
(y 1)
9
(y
3
y
2
+ 2y 1)
3
· (y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
21
11y
20
+ ··· 4y 1)(y
114
53y
113
+ ··· 60814y + 1)
c
3
, c
6
, c
7
c
10
y
9
(y
3
+ 3y
2
+ 2y 1)
3
· (y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
21
+ 9y
20
+ ··· + 4y 1)
· (y
114
+ 60y
113
+ ··· 63963136y + 262144)
c
5
, c
8
y
9
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
2
· (y
21
+ 7y
20
+ ··· + 384y 64)(y
57
+ 28y
56
+ ··· + 976y 64)
2
40