12a
0053
(K12a
0053
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 4 11 12 1 6 9 8
Solving Sequence
5,10
6
3,11
2 1 4 7 8 9 12
c
5
c
10
c
2
c
1
c
4
c
6
c
7
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.63164 × 10
260
u
101
+ 2.67815 × 10
260
u
100
+ ··· + 1.75319 × 10
262
b 2.53854 × 10
263
,
1.79420 × 10
261
u
101
+ 8.56337 × 10
260
u
100
+ ··· + 7.01276 × 10
262
a 7.92227 × 10
263
,
u
102
2u
101
+ ··· 1024u 512i
I
u
2
= hb + 1, u
5
4u
3
u
2
+ a + 4u + 3, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
I
v
1
= ha, v
2
+ b + 2v, v
3
+ 3v
2
+ 2v + 1i
I
v
2
= ha, 6v
5
+ 29v
4
57v
3
43v
2
+ 10b + 2v 1, v
6
5v
5
+ 10v
4
+ 7v
3
4v
2
2v + 1i
* 4 irreducible components of dim
C
= 0, with total 117 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.63 × 10
260
u
101
+ 2.68 × 10
260
u
100
+ · · · + 1.75 × 10
262
b 2.54 ×
10
263
, 1.79 × 10
261
u
101
+ 8.56 × 10
260
u
100
+ · · · + 7.01 × 10
262
a 7.92 ×
10
263
, u
102
2u
101
+ · · · 1024u 512i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
3
=
0.0255848u
101
0.0122111u
100
+ ··· + 83.4661u + 11.2969
0.0207145u
101
0.0152759u
100
+ ··· + 31.4829u + 14.4796
a
11
=
u
u
3
+ u
a
2
=
0.0462992u
101
0.0274870u
100
+ ··· + 114.949u + 25.7765
0.0207145u
101
0.0152759u
100
+ ··· + 31.4829u + 14.4796
a
1
=
0.0274317u
101
+ 0.0331153u
100
+ ··· 44.0458u 25.7039
0.0488757u
101
0.0591895u
100
+ ··· + 95.3012u + 28.8088
a
4
=
0.0272415u
101
0.00262615u
100
+ ··· + 74.8617u + 22.1520
0.0457661u
101
0.0510031u
100
+ ··· + 104.242u + 36.2491
a
7
=
0.0214440u
101
0.0260743u
100
+ ··· + 51.2554u + 3.10487
0.0386065u
101
+ 0.0480052u
100
+ ··· 67.1046u 20.2002
a
8
=
0.0429892u
101
0.0538624u
100
+ ··· + 87.5705u + 14.2399
0.0455989u
101
+ 0.0579958u
100
+ ··· 76.7190u 23.5004
a
9
=
0.0657508u
101
0.101129u
100
+ ··· + 110.895u + 1.93899
0.0556268u
101
+ 0.0657875u
100
+ ··· 118.941u 39.5496
a
12
=
0.0157934u
101
+ 0.0415356u
100
+ ··· + 36.6963u + 23.0326
0.00311735u
101
+ 0.00656623u
100
+ ··· 7.45847u + 6.07217
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0103007u
101
+ 0.100685u
100
+ ··· 40.1004u + 18.3924
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
102
+ 50u
101
+ ··· + 200u + 1
c
2
, c
4
u
102
10u
101
+ ··· 100u
2
+ 1
c
3
, c
6
u
102
4u
101
+ ··· + 384u 64
c
5
, c
10
u
102
2u
101
+ ··· 1024u 512
c
7
, c
9
u
102
+ 5u
101
+ ··· + 22859u + 3137
c
8
, c
11
, c
12
u
102
5u
101
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
102
+ 14y
101
+ ··· 37224y + 1
c
2
, c
4
y
102
50y
101
+ ··· 200y + 1
c
3
, c
6
y
102
+ 48y
101
+ ··· 24576y + 4096
c
5
, c
10
y
102
56y
101
+ ··· 10878976y + 262144
c
7
, c
9
y
102
71y
101
+ ··· + 595599577y + 9840769
c
8
, c
11
, c
12
y
102
+ 85y
101
+ ··· + 57y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.469735 + 0.883162I
a = 0.286453 0.882567I
b = 0.479220 + 0.391058I
2.77045 2.21678I 0
u = 0.469735 0.883162I
a = 0.286453 + 0.882567I
b = 0.479220 0.391058I
2.77045 + 2.21678I 0
u = 0.965899 + 0.256296I
a = 0.99583 1.74154I
b = 1.049970 + 0.394446I
2.68165 + 2.67345I 0
u = 0.965899 0.256296I
a = 0.99583 + 1.74154I
b = 1.049970 0.394446I
2.68165 2.67345I 0
u = 0.896724 + 0.456096I
a = 0.092216 + 0.231496I
b = 0.429580 + 0.543361I
0.100178 0.283803I 0
u = 0.896724 0.456096I
a = 0.092216 0.231496I
b = 0.429580 0.543361I
0.100178 + 0.283803I 0
u = 0.859646 + 0.497283I
a = 0.52080 + 2.39634I
b = 0.930896 0.466209I
3.08017 4.18267I 0
u = 0.859646 0.497283I
a = 0.52080 2.39634I
b = 0.930896 + 0.466209I
3.08017 + 4.18267I 0
u = 0.664667 + 0.756869I
a = 0.053899 + 1.310560I
b = 0.606787 0.823071I
8.69978 + 0.83422I 0
u = 0.664667 0.756869I
a = 0.053899 1.310560I
b = 0.606787 + 0.823071I
8.69978 0.83422I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.255024 + 0.958228I
a = 1.22671 + 1.38675I
b = 1.047270 0.391591I
0.18214 4.88214I 0
u = 0.255024 0.958228I
a = 1.22671 1.38675I
b = 1.047270 + 0.391591I
0.18214 + 4.88214I 0
u = 0.852957 + 0.467639I
a = 0.358332 0.587928I
b = 0.558508 0.610769I
5.28770 + 3.54945I 0
u = 0.852957 0.467639I
a = 0.358332 + 0.587928I
b = 0.558508 + 0.610769I
5.28770 3.54945I 0
u = 0.458068 + 0.947743I
a = 0.328346 + 1.239270I
b = 0.341772 0.633589I
0.30629 1.47045I 0
u = 0.458068 0.947743I
a = 0.328346 1.239270I
b = 0.341772 + 0.633589I
0.30629 + 1.47045I 0
u = 0.678873 + 0.626121I
a = 1.18836 1.02645I
b = 0.757090 + 0.486265I
3.62452 0.25444I 12.00000 + 0.I
u = 0.678873 0.626121I
a = 1.18836 + 1.02645I
b = 0.757090 0.486265I
3.62452 + 0.25444I 12.00000 + 0.I
u = 0.119286 + 0.909951I
a = 1.22475 1.50418I
b = 1.071070 + 0.323375I
3.94455 + 1.08858I 17.6433 + 0.I
u = 0.119286 0.909951I
a = 1.22475 + 1.50418I
b = 1.071070 0.323375I
3.94455 1.08858I 17.6433 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.054683 + 0.909702I
a = 1.07662 + 1.64430I
b = 1.126830 0.260614I
0.13399 + 2.63215I 12.00000 4.25973I
u = 0.054683 0.909702I
a = 1.07662 1.64430I
b = 1.126830 + 0.260614I
0.13399 2.63215I 12.00000 + 4.25973I
u = 0.552950 + 0.718959I
a = 0.470014 1.024770I
b = 1.024520 + 0.708766I
7.46771 4.86452I 5.39463 + 0.I
u = 0.552950 0.718959I
a = 0.470014 + 1.024770I
b = 1.024520 0.708766I
7.46771 + 4.86452I 5.39463 + 0.I
u = 1.077250 + 0.202520I
a = 1.49875 0.60317I
b = 1.007730 + 0.542878I
3.95319 1.01949I 0
u = 1.077250 0.202520I
a = 1.49875 + 0.60317I
b = 1.007730 0.542878I
3.95319 + 1.01949I 0
u = 0.847792 + 0.305277I
a = 0.306504 1.308290I
b = 0.816745 + 0.899720I
5.48740 6.77518I 12.0000 + 8.1278I
u = 0.847792 0.305277I
a = 0.306504 + 1.308290I
b = 0.816745 0.899720I
5.48740 + 6.77518I 12.0000 8.1278I
u = 0.505238 + 0.996875I
a = 0.276220 1.351900I
b = 0.335981 + 0.733204I
4.20848 + 5.36069I 0
u = 0.505238 0.996875I
a = 0.276220 + 1.351900I
b = 0.335981 0.733204I
4.20848 5.36069I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.879562 + 0.061987I
a = 1.67185 0.65129I
b = 1.118850 + 0.248432I
3.01354 0.43650I 16.9920 + 5.6265I
u = 0.879562 0.061987I
a = 1.67185 + 0.65129I
b = 1.118850 0.248432I
3.01354 + 0.43650I 16.9920 5.6265I
u = 1.010690 + 0.491378I
a = 0.304624 + 0.260791I
b = 0.311768 0.732223I
1.33313 3.20923I 0
u = 1.010690 0.491378I
a = 0.304624 0.260791I
b = 0.311768 + 0.732223I
1.33313 + 3.20923I 0
u = 0.697298 + 0.512897I
a = 0.85017 1.31278I
b = 1.203620 0.053436I
2.04651 + 2.09519I 6.28035 5.02967I
u = 0.697298 0.512897I
a = 0.85017 + 1.31278I
b = 1.203620 + 0.053436I
2.04651 2.09519I 6.28035 + 5.02967I
u = 0.415660 + 0.730923I
a = 0.077135 1.102180I
b = 0.691438 + 0.664577I
3.13379 1.41013I 5.75364 + 1.93454I
u = 0.415660 0.730923I
a = 0.077135 + 1.102180I
b = 0.691438 0.664577I
3.13379 + 1.41013I 5.75364 1.93454I
u = 0.978284 + 0.623736I
a = 0.719027 0.315629I
b = 0.422219 + 0.829820I
7.68710 + 4.41199I 0
u = 0.978284 0.623736I
a = 0.719027 + 0.315629I
b = 0.422219 0.829820I
7.68710 4.41199I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.804564 + 0.094462I
a = 0.412124 + 1.223020I
b = 0.928475 0.856899I
5.15559 0.37233I 13.56324 + 1.75422I
u = 0.804564 0.094462I
a = 0.412124 1.223020I
b = 0.928475 + 0.856899I
5.15559 + 0.37233I 13.56324 1.75422I
u = 1.183540 + 0.152520I
a = 0.584352 + 0.866013I
b = 0.327386 0.735963I
1.90155 2.90937I 0
u = 1.183540 0.152520I
a = 0.584352 0.866013I
b = 0.327386 + 0.735963I
1.90155 + 2.90937I 0
u = 1.167870 + 0.278365I
a = 0.687171 0.928053I
b = 0.421218 + 0.731632I
5.42236 1.22087I 0
u = 1.167870 0.278365I
a = 0.687171 + 0.928053I
b = 0.421218 0.731632I
5.42236 + 1.22087I 0
u = 1.161710 + 0.380863I
a = 0.754334 + 0.984612I
b = 0.493125 0.737361I
1.13135 + 5.34314I 0
u = 1.161710 0.380863I
a = 0.754334 0.984612I
b = 0.493125 + 0.737361I
1.13135 5.34314I 0
u = 0.760304 + 0.132527I
a = 0.345603 + 1.251750I
b = 0.865317 0.863222I
1.28913 + 3.15635I 18.6926 4.9567I
u = 0.760304 0.132527I
a = 0.345603 1.251750I
b = 0.865317 + 0.863222I
1.28913 3.15635I 18.6926 + 4.9567I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.118500 + 0.552200I
a = 0.95395 + 1.54284I
b = 1.114870 0.615352I
5.60729 + 9.79157I 0
u = 1.118500 0.552200I
a = 0.95395 1.54284I
b = 1.114870 + 0.615352I
5.60729 9.79157I 0
u = 1.226270 + 0.279300I
a = 1.044130 + 0.778399I
b = 1.067550 0.516419I
1.78322 + 4.05653I 0
u = 1.226270 0.279300I
a = 1.044130 0.778399I
b = 1.067550 + 0.516419I
1.78322 4.05653I 0
u = 0.341376 + 0.658757I
a = 0.850121 0.679018I
b = 0.134755 + 0.186887I
2.73869 2.12194I 5.45556 + 2.97058I
u = 0.341376 0.658757I
a = 0.850121 + 0.679018I
b = 0.134755 0.186887I
2.73869 + 2.12194I 5.45556 2.97058I
u = 0.237869 + 1.242390I
a = 0.439691 + 0.766188I
b = 1.059290 0.500801I
0.93403 + 1.83086I 0
u = 0.237869 1.242390I
a = 0.439691 0.766188I
b = 1.059290 + 0.500801I
0.93403 1.83086I 0
u = 0.131680 + 0.704994I
a = 0.328865 + 0.986806I
b = 0.921623 0.644162I
2.47180 + 3.64125I 5.93260 6.08823I
u = 0.131680 0.704994I
a = 0.328865 0.986806I
b = 0.921623 + 0.644162I
2.47180 3.64125I 5.93260 + 6.08823I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.364857 + 1.236950I
a = 0.495662 0.796350I
b = 1.095170 + 0.535588I
2.46443 6.07420I 0
u = 0.364857 1.236950I
a = 0.495662 + 0.796350I
b = 1.095170 0.535588I
2.46443 + 6.07420I 0
u = 1.258950 + 0.297340I
a = 0.401660 0.297563I
b = 1.314010 + 0.281641I
4.86882 + 0.96261I 0
u = 1.258950 0.297340I
a = 0.401660 + 0.297563I
b = 1.314010 0.281641I
4.86882 0.96261I 0
u = 0.458497 + 1.227020I
a = 0.532964 + 0.821965I
b = 1.118460 0.562936I
1.92668 + 10.29270I 0
u = 0.458497 1.227020I
a = 0.532964 0.821965I
b = 1.118460 + 0.562936I
1.92668 10.29270I 0
u = 1.187880 + 0.553524I
a = 0.355130 + 0.685776I
b = 0.239674 0.902710I
0.19904 3.04869I 0
u = 1.187880 0.553524I
a = 0.355130 0.685776I
b = 0.239674 + 0.902710I
0.19904 + 3.04869I 0
u = 1.251460 + 0.405072I
a = 0.311122 + 0.114315I
b = 1.340840 0.245232I
8.19580 + 3.31639I 0
u = 1.251460 0.405072I
a = 0.311122 0.114315I
b = 1.340840 + 0.245232I
8.19580 3.31639I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.250310 + 0.409568I
a = 0.27505 1.58198I
b = 1.122860 + 0.534778I
4.28336 + 1.91291I 0
u = 1.250310 0.409568I
a = 0.27505 + 1.58198I
b = 1.122860 0.534778I
4.28336 1.91291I 0
u = 1.245540 + 0.444122I
a = 0.86118 1.13024I
b = 1.119470 + 0.554114I
1.00865 8.08532I 0
u = 1.245540 0.444122I
a = 0.86118 + 1.13024I
b = 1.119470 0.554114I
1.00865 + 8.08532I 0
u = 1.238600 + 0.485737I
a = 0.238880 + 0.015588I
b = 1.358710 + 0.216589I
3.76353 7.55514I 0
u = 1.238600 0.485737I
a = 0.238880 0.015588I
b = 1.358710 0.216589I
3.76353 + 7.55514I 0
u = 1.248460 + 0.507912I
a = 0.17120 + 1.69208I
b = 1.098050 0.574579I
7.44285 6.21744I 0
u = 1.248460 0.507912I
a = 0.17120 1.69208I
b = 1.098050 + 0.574579I
7.44285 + 6.21744I 0
u = 1.199110 + 0.632919I
a = 0.476470 0.759573I
b = 0.281258 + 0.951290I
2.72286 + 7.32646I 0
u = 1.199110 0.632919I
a = 0.476470 + 0.759573I
b = 0.281258 0.951290I
2.72286 7.32646I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.236410 + 0.575925I
a = 0.10670 1.76523I
b = 1.076880 + 0.600242I
2.88830 + 10.46490I 0
u = 1.236410 0.575925I
a = 0.10670 + 1.76523I
b = 1.076880 0.600242I
2.88830 10.46490I 0
u = 1.192890 + 0.683328I
a = 0.556877 + 0.795127I
b = 0.311441 0.974383I
1.98421 11.53410I 0
u = 1.192890 0.683328I
a = 0.556877 0.795127I
b = 0.311441 + 0.974383I
1.98421 + 11.53410I 0
u = 1.34180 + 0.63995I
a = 0.457492 1.332140I
b = 1.196990 + 0.583051I
2.67024 8.45023I 0
u = 1.34180 0.63995I
a = 0.457492 + 1.332140I
b = 1.196990 0.583051I
2.67024 + 8.45023I 0
u = 1.28912 + 0.75340I
a = 0.36121 1.54178I
b = 1.209450 + 0.627942I
0.7652 17.3335I 0
u = 1.28912 0.75340I
a = 0.36121 + 1.54178I
b = 1.209450 0.627942I
0.7652 + 17.3335I 0
u = 1.31875 + 0.71144I
a = 0.38934 + 1.45200I
b = 1.207890 0.609037I
5.54444 + 12.98070I 0
u = 1.31875 0.71144I
a = 0.38934 1.45200I
b = 1.207890 + 0.609037I
5.54444 12.98070I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.497844
a = 0.865204
b = 0.0717077
0.675799 14.6910
u = 0.326069 + 0.266750I
a = 1.77180 + 0.55149I
b = 0.719427 0.150406I
0.978110 0.104240I 10.05546 1.12981I
u = 0.326069 0.266750I
a = 1.77180 0.55149I
b = 0.719427 + 0.150406I
0.978110 + 0.104240I 10.05546 + 1.12981I
u = 0.400500 + 0.102762I
a = 7.18535 4.89337I
b = 0.879416 + 0.112735I
1.77306 2.64662I 33.5126 4.0993I
u = 0.400500 0.102762I
a = 7.18535 + 4.89337I
b = 0.879416 0.112735I
1.77306 + 2.64662I 33.5126 + 4.0993I
u = 1.59121 + 0.07207I
a = 0.446162 0.200488I
b = 1.058940 + 0.304432I
5.92991 5.44719I 0
u = 1.59121 0.07207I
a = 0.446162 + 0.200488I
b = 1.058940 0.304432I
5.92991 + 5.44719I 0
u = 1.58344 + 0.30802I
a = 0.395590 0.007776I
b = 0.988167 + 0.243027I
5.46115 + 3.91765I 0
u = 1.58344 0.30802I
a = 0.395590 + 0.007776I
b = 0.988167 0.243027I
5.46115 3.91765I 0
u = 1.60314 + 0.19201I
a = 0.413865 + 0.095304I
b = 1.025450 0.268432I
9.63402 + 0.74509I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60314 0.19201I
a = 0.413865 0.095304I
b = 1.025450 + 0.268432I
9.63402 0.74509I 0
u = 0.341325
a = 10.9115
b = 0.954265
2.53188 77.9360
15
II. I
u
2
= hb + 1, u
5
4u
3
u
2
+ a + 4u + 3, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
3
=
u
5
+ 4u
3
+ u
2
4u 3
1
a
11
=
u
u
3
+ u
a
2
=
u
5
+ 4u
3
+ u
2
4u 4
1
a
1
=
1
0
a
4
=
u
5
+ 4u
3
+ u
2
4u 3
1
a
7
=
1
u
2
a
8
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
u
a
12
=
u
5
2u
3
u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
5
3u
4
19u
3
+ 5u
2
+ 8u 6
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
6
u
6
c
4
(u + 1)
6
c
5
, c
7
, c
9
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
8
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
10
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
11
, c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
, c
7
, c
9
c
10
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
8
, c
11
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.26610 1.72116I
b = 1.00000
1.31531 + 1.97241I 15.7816 4.5012I
u = 0.493180 0.575288I
a = 0.26610 + 1.72116I
b = 1.00000
1.31531 1.97241I 15.7816 + 4.5012I
u = 0.483672
a = 4.27462
b = 1.00000
2.38379 3.08970
u = 1.52087 + 0.16310I
a = 0.417699 + 0.090629I
b = 1.00000
5.34051 4.59213I 11.43321 + 5.39767I
u = 1.52087 0.16310I
a = 0.417699 0.090629I
b = 1.00000
5.34051 + 4.59213I 11.43321 5.39767I
u = 1.53904
a = 0.422181
b = 1.00000
9.30502 14.4810
19
III. I
v
1
= ha, v
2
+ b + 2v , v
3
+ 3v
2
+ 2v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
v
0
a
6
=
1
0
a
3
=
0
v
2
2v
a
11
=
v
0
a
2
=
v
2
2v
v
2
2v
a
1
=
v
2
2v
v + 2
a
4
=
v
2
+ 3v + 2
v
2
+ 3v + 1
a
7
=
v
2
+ 2v
v 2
a
8
=
1
v 2
a
9
=
v
2
2v 1
v
2
2v + 1
a
12
=
v + 1
2v
2
+ 6v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5v
2
11v 13
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
8
u
3
u
2
+ 2u 1
c
2
, c
7
, c
9
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
, c
10
u
3
c
6
, c
11
, c
12
u
3
+ u
2
+ 2u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
, c
7
c
9
y
3
y
2
+ 2y 1
c
5
, c
10
y
3
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.337641 + 0.562280I
a = 0
b = 0.877439 0.744862I
6.04826 + 5.65624I 8.27516 4.28659I
v = 0.337641 0.562280I
a = 0
b = 0.877439 + 0.744862I
6.04826 5.65624I 8.27516 + 4.28659I
v = 2.32472
a = 0
b = 0.754878
2.22691 14.4500
23
IV. I
v
2
=
ha, 6v
5
+29v
4
57v
3
43v
2
+10b+2v 1, v
6
5v
5
+10v
4
+7v
3
4v
2
2v+1i
(i) Arc colorings
a
5
=
1
0
a
10
=
v
0
a
6
=
1
0
a
3
=
0
3
5
v
5
29
10
v
4
+ ···
1
5
v +
1
10
a
11
=
v
0
a
2
=
3
5
v
5
29
10
v
4
+ ···
1
5
v +
1
10
3
5
v
5
29
10
v
4
+ ···
1
5
v +
1
10
a
1
=
3
5
v
5
29
10
v
4
+ ···
1
5
v +
1
10
9
20
v
5
+
11
5
v
4
+ ··· +
3
20
v +
9
4
a
4
=
1.05000v
5
+ 5.10000v
4
+ ··· + 0.350000v + 2.15000
1.05000v
5
+ 5.10000v
4
+ ··· + 0.350000v + 1.15000
a
7
=
3
5
v
5
+
29
10
v
4
+ ··· +
1
5
v
1
10
9
20
v
5
11
5
v
4
+ ···
3
20
v
9
4
a
8
=
0.650000v
5
+ 3.30000v
4
+ ··· + 0.550000v 0.0500000
9
20
v
5
11
5
v
4
+ ···
3
20
v
9
4
a
9
=
1
10
v
5
+
3
10
v
4
+ ···
13
10
v +
3
5
1
5
v
5
7
10
v
4
+ ···
7
5
v
3
2
a
12
=
1
4
v
5
13
10
v
4
+ ··· +
5
4
v
3
20
7
20
v
5
21
10
v
4
+ ···
49
20
v +
7
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
5
v
5
17
5
v
4
+
41
5
v
3
+
4
5
v
2
26
5
v
37
5
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
8
(u
3
u
2
+ 2u 1)
2
c
2
, c
7
, c
9
(u
3
+ u
2
1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
10
u
6
c
6
, c
11
, c
12
(u
3
+ u
2
+ 2u + 1)
2
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
, c
7
c
9
(y
3
y
2
+ 2y 1)
2
c
5
, c
10
y
6
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 0.609638 + 0.241870I
a = 0
b = 0.877439 + 0.744862I
6.04826 4.97493 + 1.29886I
v = 0.609638 0.241870I
a = 0
b = 0.877439 0.744862I
6.04826 4.97493 1.29886I
v = 0.407481 + 0.137827I
a = 0
b = 0.877439 + 0.744862I
1.91067 2.82812I 9.06804 0.18883I
v = 0.407481 0.137827I
a = 0
b = 0.877439 0.744862I
1.91067 + 2.82812I 9.06804 + 0.18883I
v = 2.70216 + 2.29387I
a = 0
b = 0.754878
1.91067 2.82812I 11.4570 + 15.2977I
v = 2.70216 2.29387I
a = 0
b = 0.754878
1.91067 + 2.82812I 11.4570 15.2977I
27
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
3
u
2
+ 2u 1)
3
(u
102
+ 50u
101
+ ··· + 200u + 1)
c
2
((u 1)
6
)(u
3
+ u
2
1)
3
(u
102
10u
101
+ ··· 100u
2
+ 1)
c
3
u
6
(u
3
u
2
+ 2u 1)
3
(u
102
4u
101
+ ··· + 384u 64)
c
4
((u + 1)
6
)(u
3
u
2
+ 1)
3
(u
102
10u
101
+ ··· 100u
2
+ 1)
c
5
u
9
(u
6
u
5
+ ··· + u 1)(u
102
2u
101
+ ··· 1024u 512)
c
6
u
6
(u
3
+ u
2
+ 2u + 1)
3
(u
102
4u
101
+ ··· + 384u 64)
c
7
, c
9
(u
3
+ u
2
1)
3
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)
· (u
102
+ 5u
101
+ ··· + 22859u + 3137)
c
8
(u
3
u
2
+ 2u 1)
3
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)
· (u
102
5u
101
+ ··· + 3u + 1)
c
10
u
9
(u
6
+ u
5
+ ··· u 1)(u
102
2u
101
+ ··· 1024u 512)
c
11
, c
12
(u
3
+ u
2
+ 2u + 1)
3
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
· (u
102
5u
101
+ ··· + 3u + 1)
28
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
3
+ 3y
2
+ 2y 1)
3
(y
102
+ 14y
101
+ ··· 37224y + 1)
c
2
, c
4
((y 1)
6
)(y
3
y
2
+ 2y 1)
3
(y
102
50y
101
+ ··· 200y + 1)
c
3
, c
6
y
6
(y
3
+ 3y
2
+ 2y 1)
3
(y
102
+ 48y
101
+ ··· 24576y + 4096)
c
5
, c
10
y
9
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
102
56y
101
+ ··· 10878976y + 262144)
c
7
, c
9
(y
3
y
2
+ 2y 1)
3
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
102
71y
101
+ ··· + 595599577y + 9840769)
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
3
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
· (y
102
+ 85y
101
+ ··· + 57y + 1)
29