12a
0054
(K12a
0054
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 4 12 11 6 9 1 8
Solving Sequence
5,10 3,6
2 1 4 7 9 11 8 12
c
5
c
2
c
1
c
4
c
6
c
9
c
10
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.70479 × 10
114
u
95
2.20755 × 10
114
u
94
+ ··· + 2.05537 × 10
115
b 3.80401 × 10
115
,
8.56716 × 10
113
u
95
4.40413 × 10
114
u
94
+ ··· + 4.11073 × 10
115
a + 1.80283 × 10
116
, u
96
2u
95
+ ··· 12u 8i
I
u
2
= hb + 1, u
8
+ 2u
7
3u
6
+ 3u
5
4u
4
+ 4u
3
3u
2
+ a + 2u 1, u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1i
I
v
1
= ha, v
2
+ b + 3v + 1, v
3
2v
2
3v 1i
* 3 irreducible components of dim
C
= 0, with total 108 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.70 × 10
114
u
95
2.21 × 10
114
u
94
+ · · · + 2.06 × 10
115
b 3.80 ×
10
115
, 8.57 × 10
113
u
95
4.40 × 10
114
u
94
+ · · · + 4.11 × 10
115
a + 1.80 ×
10
116
, u
96
2u
95
+ · · · 12u 8i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
0.0208409u
95
+ 0.107137u
94
+ ··· 7.91306u 4.38566
0.0829433u
95
+ 0.107404u
94
+ ··· + 3.53916u + 1.85077
a
6
=
1
u
2
a
2
=
0.103784u
95
+ 0.214541u
94
+ ··· 4.37390u 2.53489
0.0829433u
95
+ 0.107404u
94
+ ··· + 3.53916u + 1.85077
a
1
=
0.0473624u
95
0.0186442u
94
+ ··· 5.36990u 2.42402
0.137727u
95
+ 0.287200u
94
+ ··· + 2.40951u 0.488149
a
4
=
0.213197u
95
+ 0.429416u
94
+ ··· 1.62144u 0.459408
0.0719032u
95
0.0553870u
94
+ ··· 0.297884u 2.76461
a
7
=
0.0903647u
95
+ 0.268555u
94
+ ··· 2.96038u 2.91217
0.199681u
95
0.470810u
94
+ ··· 2.74051u 0.214459
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
5
u
u
7
+ u
5
+ 2u
3
+ u
a
12
=
0.0255767u
95
+ 0.0598845u
94
+ ··· 5.58218u 3.51029
0.00949794u
95
+ 0.0415095u
94
+ ··· + 2.45224u + 0.0562999
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.236170u
95
+ 0.601131u
94
+ ··· + 0.772462u 8.63749
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
96
+ 41u
95
+ ··· + 401u + 1
c
2
, c
4
u
96
11u
95
+ ··· + 7u + 1
c
3
, c
6
u
96
2u
95
+ ··· + 1536u 512
c
5
, c
9
u
96
2u
95
+ ··· 12u 8
c
7
, c
12
u
96
+ 5u
95
+ ··· 8u + 1
c
8
, c
10
u
96
+ 24u
95
+ ··· + 48u + 64
c
11
u
96
55u
95
+ ··· 218u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
96
+ 39y
95
+ ··· 140705y + 1
c
2
, c
4
y
96
41y
95
+ ··· 401y + 1
c
3
, c
6
y
96
+ 60y
95
+ ··· + 1835008y + 262144
c
5
, c
9
y
96
+ 24y
95
+ ··· + 48y + 64
c
7
, c
12
y
96
55y
95
+ ··· 218y + 1
c
8
, c
10
y
96
+ 92y
95
+ ··· 879872y + 4096
c
11
y
96
23y
95
+ ··· 43342y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.331849 + 0.953547I
a = 0.991852 + 0.187481I
b = 1.226360 + 0.183799I
2.99925 3.60208I 0
u = 0.331849 0.953547I
a = 0.991852 0.187481I
b = 1.226360 0.183799I
2.99925 + 3.60208I 0
u = 0.420726 + 0.894455I
a = 0.0748654 + 0.0783523I
b = 0.326390 + 0.493463I
0.09751 + 2.03694I 0
u = 0.420726 0.894455I
a = 0.0748654 0.0783523I
b = 0.326390 0.493463I
0.09751 2.03694I 0
u = 0.763608 + 0.666822I
a = 0.370790 0.523796I
b = 0.479897 + 0.066967I
3.69919 + 1.25518I 0
u = 0.763608 0.666822I
a = 0.370790 + 0.523796I
b = 0.479897 0.066967I
3.69919 1.25518I 0
u = 0.917832 + 0.330602I
a = 0.422961 + 0.922598I
b = 1.011070 0.616866I
2.58601 + 6.51221I 0
u = 0.917832 0.330602I
a = 0.422961 0.922598I
b = 1.011070 + 0.616866I
2.58601 6.51221I 0
u = 0.846687 + 0.463347I
a = 0.080098 1.096030I
b = 0.571760 + 0.611302I
3.84701 + 1.59882I 0
u = 0.846687 0.463347I
a = 0.080098 + 1.096030I
b = 0.571760 0.611302I
3.84701 1.59882I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.214407 + 0.917724I
a = 1.21899 + 1.73083I
b = 1.043700 0.362721I
3.72115 1.69356I 8.89200 + 0.I
u = 0.214407 0.917724I
a = 1.21899 1.73083I
b = 1.043700 + 0.362721I
3.72115 + 1.69356I 8.89200 + 0.I
u = 0.399586 + 0.985773I
a = 0.64535 1.97533I
b = 1.015690 + 0.459888I
2.29930 + 5.98929I 0
u = 0.399586 0.985773I
a = 0.64535 + 1.97533I
b = 1.015690 0.459888I
2.29930 5.98929I 0
u = 0.105934 + 0.913879I
a = 1.49280 + 0.48603I
b = 1.144490 0.244528I
4.04166 0.52516I 8.55610 + 0.I
u = 0.105934 0.913879I
a = 1.49280 0.48603I
b = 1.144490 + 0.244528I
4.04166 + 0.52516I 8.55610 + 0.I
u = 0.543375 + 0.935475I
a = 0.306378 + 0.400786I
b = 0.588526 + 0.269748I
0.07900 + 2.11206I 0
u = 0.543375 0.935475I
a = 0.306378 0.400786I
b = 0.588526 0.269748I
0.07900 2.11206I 0
u = 0.287889 + 0.845646I
a = 0.949105 + 0.732014I
b = 0.483494 0.489887I
0.67980 + 2.01844I 2.00000 3.46901I
u = 0.287889 0.845646I
a = 0.949105 0.732014I
b = 0.483494 + 0.489887I
0.67980 2.01844I 2.00000 + 3.46901I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.002493 + 1.116370I
a = 1.228320 + 0.018327I
b = 0.949803 0.482210I
3.12502 + 4.24954I 0
u = 0.002493 1.116370I
a = 1.228320 0.018327I
b = 0.949803 + 0.482210I
3.12502 4.24954I 0
u = 0.508460 + 0.999100I
a = 0.361486 + 0.232503I
b = 0.336484 0.738021I
1.95677 6.48071I 0
u = 0.508460 0.999100I
a = 0.361486 0.232503I
b = 0.336484 + 0.738021I
1.95677 + 6.48071I 0
u = 0.416500 + 0.770558I
a = 0.483230 1.295950I
b = 0.671787 0.640819I
4.46916 + 0.68945I 3.28117 + 0.85960I
u = 0.416500 0.770558I
a = 0.483230 + 1.295950I
b = 0.671787 + 0.640819I
4.46916 0.68945I 3.28117 0.85960I
u = 0.332265 + 1.076590I
a = 1.42109 + 1.04142I
b = 1.046100 0.573034I
1.83045 + 6.55518I 0
u = 0.332265 1.076590I
a = 1.42109 1.04142I
b = 1.046100 + 0.573034I
1.83045 6.55518I 0
u = 0.177267 + 1.115030I
a = 0.907127 + 0.317756I
b = 0.879589 + 0.432826I
2.75506 + 0.64484I 0
u = 0.177267 1.115030I
a = 0.907127 0.317756I
b = 0.879589 0.432826I
2.75506 0.64484I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.247496 + 0.816258I
a = 2.79839 0.99348I
b = 0.969526 + 0.629311I
3.58367 4.30558I 0.11915 + 6.48044I
u = 0.247496 0.816258I
a = 2.79839 + 0.99348I
b = 0.969526 0.629311I
3.58367 + 4.30558I 0.11915 6.48044I
u = 0.840798 + 0.068830I
a = 0.306920 0.930091I
b = 0.918979 + 0.594287I
1.56693 2.64898I 0.12373 + 1.94416I
u = 0.840798 0.068830I
a = 0.306920 + 0.930091I
b = 0.918979 0.594287I
1.56693 + 2.64898I 0.12373 1.94416I
u = 0.039988 + 0.842192I
a = 0.669881 0.384390I
b = 0.173785 + 0.414358I
1.31139 + 1.53275I 3.91456 5.18456I
u = 0.039988 0.842192I
a = 0.669881 + 0.384390I
b = 0.173785 0.414358I
1.31139 1.53275I 3.91456 + 5.18456I
u = 0.799059 + 0.846331I
a = 1.07319 + 1.14008I
b = 0.806160 0.624229I
2.43670 + 0.52493I 0
u = 0.799059 0.846331I
a = 1.07319 1.14008I
b = 0.806160 + 0.624229I
2.43670 0.52493I 0
u = 0.767472 + 0.888370I
a = 0.084906 + 0.851187I
b = 1.332930 + 0.034727I
0.72602 2.90143I 0
u = 0.767472 0.888370I
a = 0.084906 0.851187I
b = 1.332930 0.034727I
0.72602 + 2.90143I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.885713 + 0.776635I
a = 0.572131 + 1.015580I
b = 1.108900 0.724154I
6.26538 + 5.58089I 0
u = 0.885713 0.776635I
a = 0.572131 1.015580I
b = 1.108900 + 0.724154I
6.26538 5.58089I 0
u = 0.857556 + 0.825746I
a = 0.080065 0.973811I
b = 1.340690 + 0.009120I
4.57395 1.45279I 0
u = 0.857556 0.825746I
a = 0.080065 + 0.973811I
b = 1.340690 0.009120I
4.57395 + 1.45279I 0
u = 0.830770 + 0.862931I
a = 0.586564 1.051620I
b = 1.112920 + 0.756547I
10.10790 1.19035I 0
u = 0.830770 0.862931I
a = 0.586564 + 1.051620I
b = 1.112920 0.756547I
10.10790 + 1.19035I 0
u = 0.760213 + 0.255609I
a = 0.148446 + 1.002920I
b = 0.776189 0.607942I
2.00761 + 2.10017I 0.83891 4.53868I
u = 0.760213 0.255609I
a = 0.148446 1.002920I
b = 0.776189 + 0.607942I
2.00761 2.10017I 0.83891 + 4.53868I
u = 0.838980 + 0.859841I
a = 0.17172 + 2.31211I
b = 0.839704 0.634470I
6.20074 1.00773I 0
u = 0.838980 0.859841I
a = 0.17172 2.31211I
b = 0.839704 + 0.634470I
6.20074 + 1.00773I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.474625 + 1.104840I
a = 1.12838 1.39898I
b = 1.091600 + 0.599495I
0.12483 11.51150I 0
u = 0.474625 1.104840I
a = 1.12838 + 1.39898I
b = 1.091600 0.599495I
0.12483 + 11.51150I 0
u = 0.870715 + 0.833568I
a = 0.05442 1.45713I
b = 0.556085 + 0.944376I
7.96094 0.52062I 0
u = 0.870715 0.833568I
a = 0.05442 + 1.45713I
b = 0.556085 0.944376I
7.96094 + 0.52062I 0
u = 0.894404 + 0.820640I
a = 1.08831 1.18593I
b = 0.861586 + 0.633055I
6.13236 + 3.94857I 0
u = 0.894404 0.820640I
a = 1.08831 + 1.18593I
b = 0.861586 0.633055I
6.13236 3.94857I 0
u = 0.781161 + 0.930558I
a = 0.06641 2.24202I
b = 0.888865 + 0.621738I
2.17830 + 5.41664I 0
u = 0.781161 0.930558I
a = 0.06641 + 2.24202I
b = 0.888865 0.621738I
2.17830 5.41664I 0
u = 0.806984 + 0.930820I
a = 0.56083 + 2.34249I
b = 1.126410 0.722210I
9.89480 + 7.30761I 0
u = 0.806984 0.930820I
a = 0.56083 2.34249I
b = 1.126410 + 0.722210I
9.89480 7.30761I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.703854 + 1.011630I
a = 0.305278 0.370471I
b = 0.679665 0.142081I
2.66867 6.83395I 0
u = 0.703854 1.011630I
a = 0.305278 + 0.370471I
b = 0.679665 + 0.142081I
2.66867 + 6.83395I 0
u = 0.703787 + 0.300436I
a = 1.45363 + 1.29987I
b = 0.925873 0.325878I
0.02370 2.00842I 1.62743 + 4.29984I
u = 0.703787 0.300436I
a = 1.45363 1.29987I
b = 0.925873 + 0.325878I
0.02370 + 2.00842I 1.62743 4.29984I
u = 0.846783 + 0.902988I
a = 0.09596 + 1.47858I
b = 0.583726 0.977505I
11.73460 + 5.11833I 0
u = 0.846783 0.902988I
a = 0.09596 1.47858I
b = 0.583726 + 0.977505I
11.73460 5.11833I 0
u = 0.812021 + 0.937351I
a = 1.02775 1.15508I
b = 0.792949 + 0.675723I
5.95824 5.15041I 0
u = 0.812021 0.937351I
a = 1.02775 + 1.15508I
b = 0.792949 0.675723I
5.95824 + 5.15041I 0
u = 0.844920 + 0.911321I
a = 1.228240 0.696496I
b = 0.535424 + 0.960203I
11.70970 + 1.16815I 0
u = 0.844920 0.911321I
a = 1.228240 + 0.696496I
b = 0.535424 0.960203I
11.70970 1.16815I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.938146 + 0.839572I
a = 0.02587 + 1.49281I
b = 0.518746 0.964023I
11.59380 4.19583I 0
u = 0.938146 0.839572I
a = 0.02587 1.49281I
b = 0.518746 + 0.964023I
11.59380 + 4.19583I 0
u = 0.964249 + 0.810539I
a = 0.600574 0.998151I
b = 1.135580 + 0.716044I
9.6993 10.3238I 0
u = 0.964249 0.810539I
a = 0.600574 + 0.998151I
b = 1.135580 0.716044I
9.6993 + 10.3238I 0
u = 0.807188 + 0.967313I
a = 0.010286 0.719507I
b = 1.367010 0.045646I
4.13276 + 7.64866I 0
u = 0.807188 0.967313I
a = 0.010286 + 0.719507I
b = 1.367010 + 0.045646I
4.13276 7.64866I 0
u = 0.818771 + 0.967967I
a = 1.077720 + 0.692980I
b = 0.495683 0.960350I
7.53995 5.75065I 0
u = 0.818771 0.967967I
a = 1.077720 0.692980I
b = 0.495683 + 0.960350I
7.53995 + 5.75065I 0
u = 0.374478 + 0.621105I
a = 0.250485 1.236750I
b = 0.790669 + 0.824031I
4.94910 3.81882I 2.10350 + 10.02722I
u = 0.374478 0.621105I
a = 0.250485 + 1.236750I
b = 0.790669 0.824031I
4.94910 + 3.81882I 2.10350 10.02722I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.798420 + 1.005590I
a = 0.54011 2.13936I
b = 1.143510 + 0.704102I
5.55281 11.82450I 0
u = 0.798420 1.005590I
a = 0.54011 + 2.13936I
b = 1.143510 0.704102I
5.55281 + 11.82450I 0
u = 0.822932 + 0.988050I
a = 0.10986 + 2.15970I
b = 0.907528 0.655336I
5.60270 10.30350I 0
u = 0.822932 0.988050I
a = 0.10986 2.15970I
b = 0.907528 + 0.655336I
5.60270 + 10.30350I 0
u = 0.852797 + 1.004360I
a = 1.040640 0.796571I
b = 0.485399 + 0.990678I
11.0580 + 10.7846I 0
u = 0.852797 1.004360I
a = 1.040640 + 0.796571I
b = 0.485399 0.990678I
11.0580 10.7846I 0
u = 0.846509 + 1.032650I
a = 0.40884 + 2.10501I
b = 1.160850 0.710725I
8.9763 + 16.9659I 0
u = 0.846509 1.032650I
a = 0.40884 2.10501I
b = 1.160850 + 0.710725I
8.9763 16.9659I 0
u = 0.593118 + 0.166075I
a = 1.21211 + 2.60731I
b = 1.065150 0.117254I
0.593809 + 0.331522I 1.43748 9.72886I
u = 0.593118 0.166075I
a = 1.21211 2.60731I
b = 1.065150 + 0.117254I
0.593809 0.331522I 1.43748 + 9.72886I
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.254616 + 0.556672I
a = 0.397794 + 1.141700I
b = 0.937472 0.785999I
4.51649 + 2.17388I 1.65157 + 5.92574I
u = 0.254616 0.556672I
a = 0.397794 1.141700I
b = 0.937472 + 0.785999I
4.51649 2.17388I 1.65157 5.92574I
u = 0.265888 + 0.464329I
a = 2.42948 5.30179I
b = 0.833958 + 0.214787I
0.614687 + 0.409343I 5.88588 9.56935I
u = 0.265888 0.464329I
a = 2.42948 + 5.30179I
b = 0.833958 0.214787I
0.614687 0.409343I 5.88588 + 9.56935I
u = 0.463872
a = 1.34884
b = 0.0516319
1.25812 8.69990
u = 0.262621
a = 2.59919
b = 0.826000
1.19847 8.67400
14
II.
I
u
2
= hb +1, u
8
+2u
7
+· · · +a1, u
9
u
8
+2u
7
u
6
+3u
5
u
4
+2u
3
+u+1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
3
=
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1
1
a
6
=
1
u
2
a
2
=
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u
1
a
1
=
1
0
a
4
=
u
8
2u
7
+ 3u
6
3u
5
+ 4u
4
4u
3
+ 3u
2
2u + 1
1
a
7
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
5
u
u
7
+ u
5
+ 2u
3
+ u
a
12
=
u
5
+ u
u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
8
8u
7
+ 12u
6
11u
5
+ 18u
4
17u
3
+ 15u
2
6u + 4
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
6
u
9
c
4
(u + 1)
9
c
5
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
7
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
8
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
9
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
10
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
11
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
12
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
6
y
9
c
5
, c
9
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
7
, c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
8
, c
10
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
11
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.140343 + 0.966856I
a = 1.004430 + 0.297869I
b = 1.00000
3.42837 2.09337I 6.83106 + 4.06115I
u = 0.140343 0.966856I
a = 1.004430 0.297869I
b = 1.00000
3.42837 + 2.09337I 6.83106 4.06115I
u = 0.628449 + 0.875112I
a = 0.275254 + 0.816341I
b = 1.00000
1.02799 2.45442I 7.33502 + 3.27944I
u = 0.628449 0.875112I
a = 0.275254 0.816341I
b = 1.00000
1.02799 + 2.45442I 7.33502 3.27944I
u = 0.796005 + 0.733148I
a = 0.070080 0.850995I
b = 1.00000
2.72642 1.33617I 2.78826 + 0.80685I
u = 0.796005 0.733148I
a = 0.070080 + 0.850995I
b = 1.00000
2.72642 + 1.33617I 2.78826 0.80685I
u = 0.728966 + 0.986295I
a = 0.195086 0.635552I
b = 1.00000
1.95319 + 7.08493I 4.66194 6.93476I
u = 0.728966 0.986295I
a = 0.195086 + 0.635552I
b = 1.00000
1.95319 7.08493I 4.66194 + 6.93476I
u = 0.512358
a = 3.80937
b = 1.00000
0.446489 15.2330
18
III. I
v
1
= ha, v
2
+ b + 3v + 1, v
3
2v
2
3v 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
v
0
a
3
=
0
v
2
3v 1
a
6
=
1
0
a
2
=
v
2
3v 1
v
2
3v 1
a
1
=
v
2
3v 1
v
2
+ 2v + 3
a
4
=
2v
2
+ 5v + 4
2v
2
+ 5v + 3
a
7
=
v
2
+ 3v + 1
v
2
2v 3
a
9
=
v
0
a
11
=
v
0
a
8
=
v
0
a
12
=
v
2
2v 1
v
2
+ 2v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6v
2
19v 9
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
, c
8
, c
9
c
10
u
3
c
6
u
3
+ u
2
+ 2u + 1
c
7
, c
11
(u + 1)
3
c
12
(u 1)
3
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
y
3
y
2
+ 2y 1
c
5
, c
8
, c
9
c
10
y
3
c
7
, c
11
, c
12
(y 1)
3
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.539798 + 0.182582I
a = 0
b = 0.877439 0.744862I
4.66906 + 2.82812I 2.80443 4.65175I
v = 0.539798 0.182582I
a = 0
b = 0.877439 + 0.744862I
4.66906 2.82812I 2.80443 + 4.65175I
v = 3.07960
a = 0
b = 0.754878
0.531480 10.6090
22
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
3
u
2
+ 2u 1)(u
96
+ 41u
95
+ ··· + 401u + 1)
c
2
((u 1)
9
)(u
3
+ u
2
1)(u
96
11u
95
+ ··· + 7u + 1)
c
3
u
9
(u
3
u
2
+ 2u 1)(u
96
2u
95
+ ··· + 1536u 512)
c
4
((u + 1)
9
)(u
3
u
2
+ 1)(u
96
11u
95
+ ··· + 7u + 1)
c
5
u
3
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
96
2u
95
+ ··· 12u 8)
c
6
u
9
(u
3
+ u
2
+ 2u + 1)(u
96
2u
95
+ ··· + 1536u 512)
c
7
(u + 1)
3
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
96
+ 5u
95
+ ··· 8u + 1)
c
8
u
3
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
96
+ 24u
95
+ ··· + 48u + 64)
c
9
u
3
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
96
2u
95
+ ··· 12u 8)
c
10
u
3
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
96
+ 24u
95
+ ··· + 48u + 64)
c
11
(u + 1)
3
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
· (u
96
55u
95
+ ··· 218u + 1)
c
12
(u 1)
3
(u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1)
· (u
96
+ 5u
95
+ ··· 8u + 1)
23
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
3
+ 3y
2
+ 2y 1)(y
96
+ 39y
95
+ ··· 140705y + 1)
c
2
, c
4
((y 1)
9
)(y
3
y
2
+ 2y 1)(y
96
41y
95
+ ··· 401y + 1)
c
3
, c
6
y
9
(y
3
+ 3y
2
+ 2y 1)(y
96
+ 60y
95
+ ··· + 1835008y + 262144)
c
5
, c
9
y
3
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
96
+ 24y
95
+ ··· + 48y + 64)
c
7
, c
12
(y 1)
3
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
96
55y
95
+ ··· 218y + 1)
c
8
, c
10
y
3
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
96
+ 92y
95
+ ··· 879872y + 4096)
c
11
(y 1)
3
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
96
23y
95
+ ··· 43342y + 1)
24