12a
0056
(K12a
0056
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 4 1 12 11 6 9 8
Solving Sequence
5,10
6
3,11
2 1 4 7 9 12 8
c
5
c
10
c
2
c
1
c
4
c
6
c
9
c
11
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
48
u
47
+ ··· + b + 1, u
45
4u
43
+ ··· + a 5u, u
49
+ 2u
48
+ ··· + u 1i
I
u
2
= hb + 1, u
4
u
2
+ a + u + 2, u
5
u
4
+ u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
48
u
47
+· · ·+b+1, u
45
4u
43
+· · ·+a5u, u
49
+2u
48
+· · ·+u1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
3
=
u
45
+ 4u
43
+ ··· 22u
3
+ 5u
u
48
+ u
47
+ ··· + 4u
2
1
a
11
=
u
u
3
+ u
a
2
=
u
48
+ u
47
+ ··· + 5u 1
u
48
+ u
47
+ ··· + 4u
2
1
a
1
=
u
9
+ 3u
5
+ u
u
11
u
9
+ 4u
7
3u
5
+ 3u
3
u
a
4
=
2u
48
+ 2u
47
+ ··· + 6u 1
u
48
+ u
47
+ ··· + u 1
a
7
=
u
11
+ 4u
7
+ 3u
3
u
13
u
11
+ 5u
9
4u
7
+ 6u
5
3u
3
+ u
a
9
=
u
3
u
5
u
3
+ u
a
12
=
u
5
u
u
7
+ u
5
2u
3
+ u
a
8
=
u
7
+ 2u
3
u
9
u
7
+ 3u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
48
+ 5u
47
+ ··· + 9u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
49
+ 20u
48
+ ··· + 79u + 1
c
2
, c
4
u
49
6u
48
+ ··· u + 1
c
3
, c
6
u
49
u
48
+ ··· + 64u + 32
c
5
, c
10
u
49
2u
48
+ ··· + u + 1
c
7
, c
8
, c
9
c
11
, c
12
u
49
+ 8u
48
+ ··· + 13u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
49
+ 24y
48
+ ··· + 2991y 1
c
2
, c
4
y
49
20y
48
+ ··· + 79y 1
c
3
, c
6
y
49
+ 33y
48
+ ··· 9728y 1024
c
5
, c
10
y
49
8y
48
+ ··· + 13y 1
c
7
, c
8
, c
9
c
11
, c
12
y
49
+ 68y
48
+ ··· 67y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.760736 + 0.719246I
a = 1.12247 + 1.09140I
b = 0.784658 0.558197I
3.14913 + 0.38825I 7.13985 + 0.I
u = 0.760736 0.719246I
a = 1.12247 1.09140I
b = 0.784658 + 0.558197I
3.14913 0.38825I 7.13985 + 0.I
u = 0.796734 + 0.681722I
a = 0.291180 + 1.036890I
b = 1.281700 + 0.033312I
1.51702 2.54299I 6.23264 + 3.96997I
u = 0.796734 0.681722I
a = 0.291180 1.036890I
b = 1.281700 0.033312I
1.51702 + 2.54299I 6.23264 3.96997I
u = 0.892137 + 0.327379I
a = 2.17207 + 1.31935I
b = 1.005090 0.623169I
0.43580 + 6.91892I 11.9536 9.3736I
u = 0.892137 0.327379I
a = 2.17207 1.31935I
b = 1.005090 + 0.623169I
0.43580 6.91892I 11.9536 + 9.3736I
u = 0.844082 + 0.428322I
a = 0.187763 + 0.837953I
b = 0.617924 + 0.579853I
1.59253 + 2.02971I 8.12894 3.92342I
u = 0.844082 0.428322I
a = 0.187763 0.837953I
b = 0.617924 0.579853I
1.59253 2.02971I 8.12894 + 3.92342I
u = 0.693592 + 0.795699I
a = 0.527393 + 1.026490I
b = 1.070340 0.723216I
7.01029 + 5.24368I 5.42899 3.02603I
u = 0.693592 0.795699I
a = 0.527393 1.026490I
b = 1.070340 + 0.723216I
7.01029 5.24368I 5.42899 + 3.02603I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.842140 + 0.687789I
a = 0.05555 2.42181I
b = 0.868271 + 0.553100I
2.88211 + 4.83632I 8.23420 6.42667I
u = 0.842140 0.687789I
a = 0.05555 + 2.42181I
b = 0.868271 0.553100I
2.88211 4.83632I 8.23420 + 6.42667I
u = 0.749509 + 0.792916I
a = 0.060126 1.378320I
b = 0.588767 + 0.880625I
8.45422 0.68674I 3.54074 + 1.96318I
u = 0.749509 0.792916I
a = 0.060126 + 1.378320I
b = 0.588767 0.880625I
8.45422 + 0.68674I 3.54074 1.96318I
u = 0.737633 + 0.516972I
a = 0.414474 + 0.300895I
b = 0.346209 + 0.168150I
1.34830 + 2.00478I 4.48597 4.55079I
u = 0.737633 0.516972I
a = 0.414474 0.300895I
b = 0.346209 0.168150I
1.34830 2.00478I 4.48597 + 4.55079I
u = 0.880418 + 0.058419I
a = 1.79760 0.81935I
b = 0.877222 0.561628I
0.98474 + 2.22735I 14.5110 2.6928I
u = 0.880418 0.058419I
a = 1.79760 + 0.81935I
b = 0.877222 + 0.561628I
0.98474 2.22735I 14.5110 + 2.6928I
u = 0.892884 + 0.720049I
a = 1.122640 + 0.355505I
b = 0.517458 0.877459I
7.97137 4.88104I 4.58899 + 4.14916I
u = 0.892884 0.720049I
a = 1.122640 0.355505I
b = 0.517458 + 0.877459I
7.97137 + 4.88104I 4.58899 4.14916I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.922095 + 0.682387I
a = 0.94618 2.27074I
b = 1.097470 + 0.693580I
6.24237 10.68800I 7.37912 + 8.93754I
u = 0.922095 0.682387I
a = 0.94618 + 2.27074I
b = 1.097470 0.693580I
6.24237 + 10.68800I 7.37912 8.93754I
u = 0.740442 + 0.287353I
a = 1.50962 + 2.57763I
b = 0.946359 0.333388I
2.14769 2.41886I 15.9646 + 6.9978I
u = 0.740442 0.287353I
a = 1.50962 2.57763I
b = 0.946359 + 0.333388I
2.14769 + 2.41886I 15.9646 6.9978I
u = 0.359412 + 0.611149I
a = 0.165040 + 1.109630I
b = 0.758551 0.696515I
3.14714 + 1.64287I 3.84623 3.06683I
u = 0.359412 0.611149I
a = 0.165040 1.109630I
b = 0.758551 + 0.696515I
3.14714 1.64287I 3.84623 + 3.06683I
u = 0.931772 + 0.895572I
a = 0.237488 0.406711I
b = 0.694049 0.014591I
9.96355 3.30520I 0
u = 0.931772 0.895572I
a = 0.237488 + 0.406711I
b = 0.694049 + 0.014591I
9.96355 + 3.30520I 0
u = 0.682651 + 0.184302I
a = 2.50646 0.45724I
b = 1.096840 0.143397I
2.69048 + 0.60292I 15.3689 9.6396I
u = 0.682651 0.184302I
a = 2.50646 + 0.45724I
b = 1.096840 + 0.143397I
2.69048 0.60292I 15.3689 + 9.6396I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.948044 + 0.926579I
a = 0.195056 0.777042I
b = 1.395190 0.006072I
11.83110 + 3.40658I 0
u = 0.948044 0.926579I
a = 0.195056 + 0.777042I
b = 1.395190 + 0.006072I
11.83110 3.40658I 0
u = 0.942403 + 0.933530I
a = 1.03952 1.20944I
b = 0.855209 + 0.703197I
13.54070 0.72694I 0
u = 0.942403 0.933530I
a = 1.03952 + 1.20944I
b = 0.855209 0.703197I
13.54070 + 0.72694I 0
u = 0.927792 + 0.948411I
a = 0.633748 1.030830I
b = 1.155820 + 0.749430I
17.4053 6.0517I 0
u = 0.927792 0.948411I
a = 0.633748 + 1.030830I
b = 1.155820 0.749430I
17.4053 + 6.0517I 0
u = 0.956706 + 0.925364I
a = 0.22666 + 2.17249I
b = 0.870319 0.699281I
13.4933 6.1049I 0
u = 0.956706 0.925364I
a = 0.22666 2.17249I
b = 0.870319 + 0.699281I
13.4933 + 6.1049I 0
u = 0.939680 + 0.946771I
a = 0.07120 + 1.53829I
b = 0.540687 1.020080I
19.3115 + 0.3590I 0
u = 0.939680 0.946771I
a = 0.07120 1.53829I
b = 0.540687 + 1.020080I
19.3115 0.3590I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.975390 + 0.920268I
a = 0.26091 + 2.26210I
b = 1.161320 0.741973I
17.2463 + 12.9142I 0
u = 0.975390 0.920268I
a = 0.26091 2.26210I
b = 1.161320 + 0.741973I
17.2463 12.9142I 0
u = 0.968824 + 0.929241I
a = 1.16534 0.91357I
b = 0.526652 + 1.020740I
19.2138 + 6.5292I 0
u = 0.968824 0.929241I
a = 1.16534 + 0.91357I
b = 0.526652 1.020740I
19.2138 6.5292I 0
u = 0.222542 + 0.611946I
a = 0.356092 1.021050I
b = 0.934438 + 0.678142I
2.61636 3.65615I 4.75819 + 3.34819I
u = 0.222542 0.611946I
a = 0.356092 + 1.021050I
b = 0.934438 0.678142I
2.61636 + 3.65615I 4.75819 3.34819I
u = 0.560438
a = 0.882793
b = 0.134956
0.730326 14.0240
u = 0.314290 + 0.268544I
a = 1.79832 0.55498I
b = 0.725982 + 0.146511I
0.980654 + 0.106245I 9.70626 + 1.04735I
u = 0.314290 0.268544I
a = 1.79832 + 0.55498I
b = 0.725982 0.146511I
0.980654 0.106245I 9.70626 1.04735I
9
II. I
u
2
= hb + 1, u
4
u
2
+ a + u + 2, u
5
u
4
+ u
2
+ u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
3
=
u
4
+ u
2
u 2
1
a
11
=
u
u
3
+ u
a
2
=
u
4
+ u
2
u 3
1
a
1
=
1
0
a
4
=
u
4
+ u
2
u 2
1
a
7
=
1
u
2
a
9
=
u
3
u
4
u
3
u
2
+ 1
a
12
=
u
4
+ u
2
1
u
4
a
8
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
+ 3u
2
u 14
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
6
u
5
c
4
(u + 1)
5
c
5
u
5
u
4
+ u
2
+ u 1
c
7
, c
8
, c
9
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
10
u
5
+ u
4
u
2
+ u + 1
c
11
, c
12
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
6
y
5
c
5
, c
10
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
c
7
, c
8
, c
9
c
11
, c
12
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.758138 + 0.584034I
a = 0.278580 1.055720I
b = 1.00000
0.17487 + 2.21397I 12.88087 4.04855I
u = 0.758138 0.584034I
a = 0.278580 + 1.055720I
b = 1.00000
0.17487 2.21397I 12.88087 + 4.04855I
u = 0.935538 + 0.903908I
a = 0.020316 + 0.590570I
b = 1.00000
9.31336 3.33174I 13.28666 + 2.53508I
u = 0.935538 0.903908I
a = 0.020316 0.590570I
b = 1.00000
9.31336 + 3.33174I 13.28666 2.53508I
u = 0.645200
a = 2.40221
b = 1.00000
2.52712 13.6650
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
49
+ 20u
48
+ ··· + 79u + 1)
c
2
((u 1)
5
)(u
49
6u
48
+ ··· u + 1)
c
3
, c
6
u
5
(u
49
u
48
+ ··· + 64u + 32)
c
4
((u + 1)
5
)(u
49
6u
48
+ ··· u + 1)
c
5
(u
5
u
4
+ u
2
+ u 1)(u
49
2u
48
+ ··· + u + 1)
c
7
, c
8
, c
9
(u
5
u
4
+ 4u
3
3u
2
+ 3u 1)(u
49
+ 8u
48
+ ··· + 13u + 1)
c
10
(u
5
+ u
4
u
2
+ u + 1)(u
49
2u
48
+ ··· + u + 1)
c
11
, c
12
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)(u
49
+ 8u
48
+ ··· + 13u + 1)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
5
)(y
49
+ 24y
48
+ ··· + 2991y 1)
c
2
, c
4
((y 1)
5
)(y
49
20y
48
+ ··· + 79y 1)
c
3
, c
6
y
5
(y
49
+ 33y
48
+ ··· 9728y 1024)
c
5
, c
10
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)(y
49
8y
48
+ ··· + 13y 1)
c
7
, c
8
, c
9
c
11
, c
12
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)(y
49
+ 68y
48
+ ··· 67y 1)
15