12a
0081
(K12a
0081
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 9 11 4 7 1 12 6 10
Solving Sequence
4,7
8
1,9
10 3 2 5 12 11 6
c
7
c
8
c
9
c
3
c
1
c
4
c
12
c
10
c
6
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.57817 × 10
68
u
82
4.41680 × 10
68
u
81
+ ··· + 1.40607 × 10
69
b 1.45069 × 10
70
,
8.02816 × 10
70
u
82
7.69195 × 10
70
u
81
+ ··· + 1.71541 × 10
71
a 8.36164 × 10
71
,
u
83
+ u
82
+ ··· + 24u + 16i
I
v
1
= ha, v
3
+ 2v
2
+ b 3v + 1, v
4
2v
3
+ 3v
2
v + 1i
* 2 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.58 × 10
68
u
82
4.42 × 10
68
u
81
+ · · · + 1.41 × 10
69
b 1.45 ×
10
70
, 8.03 × 10
70
u
82
7.69 × 10
70
u
81
+ · · · + 1.72 × 10
71
a 8.36 ×
10
71
, u
83
+ u
82
+ · · · + 24u + 16i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
1
=
0.468003u
82
+ 0.448403u
81
+ ··· + 25.8370u + 4.87443
0.325600u
82
+ 0.314123u
81
+ ··· + 27.3694u + 10.3173
a
9
=
u
2
+ 1
u
2
a
10
=
0.300402u
82
0.851248u
81
+ ··· 25.8721u 4.83081
0.617837u
82
0.388150u
81
+ ··· 21.4249u + 11.7726
a
3
=
u
u
3
+ u
a
2
=
0.518352u
82
+ 0.412444u
81
+ ··· + 28.9820u + 7.48317
0.507921u
82
+ 0.442205u
81
+ ··· + 31.7802u + 14.3070
a
5
=
0.0480076u
82
+ 0.115039u
81
+ ··· + 8.55001u + 5.12927
0.419995u
82
+ 0.563442u
81
+ ··· + 34.3871u + 10.0037
a
12
=
0.535339u
82
0.604770u
81
+ ··· 41.7844u 16.0490
0.173440u
82
0.441183u
81
+ ··· 33.7669u 28.0780
a
11
=
1.16268u
82
+ 0.674679u
81
+ ··· + 49.5790u 5.78307
0.545400u
82
+ 0.632005u
81
+ ··· + 36.8130u + 12.6970
a
6
=
0.340652u
82
+ 0.495917u
81
+ ··· + 30.9853u + 15.6302
0.483055u
82
+ 0.630197u
81
+ ··· + 29.4529u + 10.1873
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.97759u
82
1.33141u
81
+ ··· 38.4761u + 8.31564
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
83
+ 45u
82
+ ··· + 4u + 1
c
2
, c
4
u
83
5u
82
+ ··· 6u + 1
c
3
, c
7
u
83
+ u
82
+ ··· + 24u + 16
c
5
u
83
+ 2u
82
+ ··· + 15190u + 7769
c
6
, c
11
u
83
+ 2u
82
+ ··· + 2u + 1
c
8
u
83
27u
82
+ ··· 5056u + 256
c
9
, c
10
, c
12
u
83
20u
82
+ ··· + 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
83
9y
82
+ ··· + 44y 1
c
2
, c
4
y
83
45y
82
+ ··· + 4y 1
c
3
, c
7
y
83
+ 27y
82
+ ··· 5056y 256
c
5
y
83
+ 28y
82
+ ··· + 953082182y 60357361
c
6
, c
11
y
83
+ 20y
82
+ ··· + 6y 1
c
8
y
83
+ 51y
82
+ ··· + 1724416y 65536
c
9
, c
10
, c
12
y
83
+ 88y
82
+ ··· + 190y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.625725 + 0.803794I
a = 0.95593 1.78325I
b = 0.809211 0.773750I
2.81993 + 3.24237I 0
u = 0.625725 0.803794I
a = 0.95593 + 1.78325I
b = 0.809211 + 0.773750I
2.81993 3.24237I 0
u = 0.823326 + 0.601133I
a = 0.994172 + 0.602548I
b = 0.97443 + 1.36618I
7.35489 + 5.05736I 0
u = 0.823326 0.601133I
a = 0.994172 0.602548I
b = 0.97443 1.36618I
7.35489 5.05736I 0
u = 0.811916 + 0.631020I
a = 0.985111 + 0.659411I
b = 0.84786 + 1.43938I
7.63827 + 1.26608I 0
u = 0.811916 0.631020I
a = 0.985111 0.659411I
b = 0.84786 1.43938I
7.63827 1.26608I 0
u = 0.133744 + 1.033610I
a = 0.235231 + 0.258306I
b = 0.952290 + 0.214525I
2.24045 + 2.24996I 0
u = 0.133744 1.033610I
a = 0.235231 0.258306I
b = 0.952290 0.214525I
2.24045 2.24996I 0
u = 0.718219 + 0.755764I
a = 1.01018 1.43608I
b = 0.328670 1.008960I
4.52117 + 0.45961I 0
u = 0.718219 0.755764I
a = 1.01018 + 1.43608I
b = 0.328670 + 1.008960I
4.52117 0.45961I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.583379 + 0.744333I
a = 0.599499 + 0.857080I
b = 0.084857 + 0.949548I
1.06506 + 1.56831I 4.77521 3.38157I
u = 0.583379 0.744333I
a = 0.599499 0.857080I
b = 0.084857 0.949548I
1.06506 1.56831I 4.77521 + 3.38157I
u = 0.699113 + 0.817903I
a = 1.03783 1.03599I
b = 1.03036 1.77245I
10.88710 1.33695I 0
u = 0.699113 0.817903I
a = 1.03783 + 1.03599I
b = 1.03036 + 1.77245I
10.88710 + 1.33695I 0
u = 0.761911 + 0.520219I
a = 0.419807 0.889805I
b = 0.245481 0.220375I
0.709170 1.043470I 60.10 + 0.525052I
u = 0.761911 0.520219I
a = 0.419807 + 0.889805I
b = 0.245481 + 0.220375I
0.709170 + 1.043470I 60.10 0.525052I
u = 0.843982 + 0.682431I
a = 1.033390 0.928808I
b = 0.476474 1.005040I
4.36263 + 2.17365I 0
u = 0.843982 0.682431I
a = 1.033390 + 0.928808I
b = 0.476474 + 1.005040I
4.36263 2.17365I 0
u = 0.894299 + 0.161895I
a = 0.276725 0.077384I
b = 0.201389 + 0.785138I
5.54438 + 1.11456I 5.40813 + 0.61307I
u = 0.894299 0.161895I
a = 0.276725 + 0.077384I
b = 0.201389 0.785138I
5.54438 1.11456I 5.40813 0.61307I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.899076 + 0.117669I
a = 0.356440 0.034756I
b = 0.361343 + 0.806350I
5.43027 + 4.95461I 4.96710 6.01399I
u = 0.899076 0.117669I
a = 0.356440 + 0.034756I
b = 0.361343 0.806350I
5.43027 4.95461I 4.96710 + 6.01399I
u = 0.482182 + 0.982828I
a = 0.288985 + 1.186530I
b = 0.515329 + 0.386646I
3.22997 1.59915I 0
u = 0.482182 0.982828I
a = 0.288985 1.186530I
b = 0.515329 0.386646I
3.22997 + 1.59915I 0
u = 0.711300 + 0.832616I
a = 1.01619 1.09996I
b = 0.88624 1.84707I
11.15090 5.10243I 0
u = 0.711300 0.832616I
a = 1.01619 + 1.09996I
b = 0.88624 + 1.84707I
11.15090 + 5.10243I 0
u = 0.615819 + 0.910490I
a = 0.610401 0.943583I
b = 0.554605 0.956704I
2.48058 + 1.63613I 0
u = 0.615819 0.910490I
a = 0.610401 + 0.943583I
b = 0.554605 + 0.956704I
2.48058 1.63613I 0
u = 0.177547 + 1.086860I
a = 0.252176 + 0.904141I
b = 0.383665 0.271787I
1.02878 + 1.71356I 0
u = 0.177547 1.086860I
a = 0.252176 0.904141I
b = 0.383665 + 0.271787I
1.02878 1.71356I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.907958 + 0.636974I
a = 1.005050 0.653160I
b = 0.911110 0.798415I
2.46547 5.87569I 0
u = 0.907958 0.636974I
a = 1.005050 + 0.653160I
b = 0.911110 + 0.798415I
2.46547 + 5.87569I 0
u = 0.042401 + 1.116900I
a = 0.433979 + 0.466369I
b = 0.986304 0.010974I
5.17570 + 0.24359I 0
u = 0.042401 1.116900I
a = 0.433979 0.466369I
b = 0.986304 + 0.010974I
5.17570 0.24359I 0
u = 0.612006 + 0.947681I
a = 0.555624 + 1.230060I
b = 0.671376 + 0.949859I
0.42036 + 3.20206I 0
u = 0.612006 0.947681I
a = 0.555624 1.230060I
b = 0.671376 0.949859I
0.42036 3.20206I 0
u = 0.688688 + 0.902295I
a = 1.35307 1.82858I
b = 1.17653 1.38858I
10.62590 + 6.67086I 0
u = 0.688688 0.902295I
a = 1.35307 + 1.82858I
b = 1.17653 + 1.38858I
10.62590 6.67086I 0
u = 0.130223 + 1.128200I
a = 0.371504 + 0.849128I
b = 0.586964 0.357707I
0.78024 + 4.16353I 0
u = 0.130223 1.128200I
a = 0.371504 0.849128I
b = 0.586964 + 0.357707I
0.78024 4.16353I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.705533 + 0.893072I
a = 1.36631 1.76146I
b = 1.05906 1.46524I
10.96570 0.32078I 0
u = 0.705533 0.893072I
a = 1.36631 + 1.76146I
b = 1.05906 + 1.46524I
10.96570 + 0.32078I 0
u = 0.178051 + 1.133310I
a = 0.475422 + 0.121754I
b = 1.104570 + 0.260893I
4.88279 5.16978I 0
u = 0.178051 1.133310I
a = 0.475422 0.121754I
b = 1.104570 0.260893I
4.88279 + 5.16978I 0
u = 0.682445 + 0.946950I
a = 0.606629 1.215410I
b = 0.077100 1.272730I
3.93501 5.83096I 0
u = 0.682445 0.946950I
a = 0.606629 + 1.215410I
b = 0.077100 + 1.272730I
3.93501 + 5.83096I 0
u = 0.328722 + 1.121940I
a = 0.378755 0.308254I
b = 0.871825 + 0.461176I
2.09689 + 3.19207I 0
u = 0.328722 1.121940I
a = 0.378755 + 0.308254I
b = 0.871825 0.461176I
2.09689 3.19207I 0
u = 0.024967 + 0.807121I
a = 0.02719 2.76173I
b = 0.077777 + 0.925635I
6.94496 3.05666I 3.34321 + 2.43833I
u = 0.024967 0.807121I
a = 0.02719 + 2.76173I
b = 0.077777 0.925635I
6.94496 + 3.05666I 3.34321 2.43833I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.953754 + 0.717155I
a = 1.34040 0.64551I
b = 1.17536 1.41586I
10.65320 + 3.17121I 0
u = 0.953754 0.717155I
a = 1.34040 + 0.64551I
b = 1.17536 + 1.41586I
10.65320 3.17121I 0
u = 0.612206 + 1.024920I
a = 0.49614 + 1.38727I
b = 1.042550 + 0.782141I
1.70143 6.86053I 0
u = 0.612206 1.024920I
a = 0.49614 1.38727I
b = 1.042550 0.782141I
1.70143 + 6.86053I 0
u = 0.965499 + 0.705935I
a = 1.32437 0.58698I
b = 1.28457 1.33784I
10.27720 9.51955I 0
u = 0.965499 0.705935I
a = 1.32437 + 0.58698I
b = 1.28457 + 1.33784I
10.27720 + 9.51955I 0
u = 0.308366 + 1.156900I
a = 0.497714 0.266067I
b = 0.962809 + 0.528516I
1.69711 9.21658I 0
u = 0.308366 1.156900I
a = 0.497714 + 0.266067I
b = 0.962809 0.528516I
1.69711 + 9.21658I 0
u = 0.658528 + 1.040780I
a = 0.255350 1.290700I
b = 0.415674 0.643365I
0.75318 + 6.40214I 0
u = 0.658528 1.040780I
a = 0.255350 + 1.290700I
b = 0.415674 + 0.643365I
0.75318 6.40214I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.620582 + 0.449791I
a = 0.654422 + 0.442608I
b = 0.668686 + 0.618299I
0.19658 + 1.98439I 0.35883 3.65260I
u = 0.620582 0.449791I
a = 0.654422 0.442608I
b = 0.668686 0.618299I
0.19658 1.98439I 0.35883 + 3.65260I
u = 0.702934 + 1.028920I
a = 0.69461 + 1.46829I
b = 1.29225 + 1.30098I
6.45103 + 4.41679I 0
u = 0.702934 1.028920I
a = 0.69461 1.46829I
b = 1.29225 1.30098I
6.45103 4.41679I 0
u = 0.697502 + 1.045330I
a = 0.66970 + 1.50286I
b = 1.38883 + 1.22662I
6.03150 10.74760I 0
u = 0.697502 1.045330I
a = 0.66970 1.50286I
b = 1.38883 1.22662I
6.03150 + 10.74760I 0
u = 0.725825 + 1.027170I
a = 0.41366 1.49953I
b = 0.739147 1.174460I
3.29687 8.03651I 0
u = 0.725825 1.027170I
a = 0.41366 + 1.49953I
b = 0.739147 + 1.174460I
3.29687 + 8.03651I 0
u = 0.734057 + 0.024032I
a = 0.624319 + 0.126422I
b = 0.622005 0.237528I
0.75127 2.02484I 1.59693 + 6.45609I
u = 0.734057 0.024032I
a = 0.624319 0.126422I
b = 0.622005 + 0.237528I
0.75127 + 2.02484I 1.59693 6.45609I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.731167 + 1.068540I
a = 0.27765 1.58986I
b = 1.08074 0.92958I
1.11740 + 11.92050I 0
u = 0.731167 1.068540I
a = 0.27765 + 1.58986I
b = 1.08074 + 0.92958I
1.11740 11.92050I 0
u = 0.032183 + 0.683518I
a = 0.122279 + 0.645170I
b = 0.378758 + 0.708726I
0.18526 + 1.83671I 0.17945 5.42341I
u = 0.032183 0.683518I
a = 0.122279 0.645170I
b = 0.378758 0.708726I
0.18526 1.83671I 0.17945 + 5.42341I
u = 0.786417 + 1.062400I
a = 0.39849 1.77701I
b = 1.45355 1.41705I
9.54622 9.55900I 0
u = 0.786417 1.062400I
a = 0.39849 + 1.77701I
b = 1.45355 + 1.41705I
9.54622 + 9.55900I 0
u = 0.785674 + 1.073250I
a = 0.35783 1.79447I
b = 1.54191 1.32398I
9.0989 + 15.9376I 0
u = 0.785674 1.073250I
a = 0.35783 + 1.79447I
b = 1.54191 + 1.32398I
9.0989 15.9376I 0
u = 0.285370 + 0.536051I
a = 0.20738 2.27538I
b = 0.292337 + 0.215670I
1.090240 0.878173I 1.75140 2.55924I
u = 0.285370 0.536051I
a = 0.20738 + 2.27538I
b = 0.292337 0.215670I
1.090240 + 0.878173I 1.75140 + 2.55924I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.009997 + 0.555746I
a = 0.044009 + 1.061120I
b = 0.10010 + 1.81655I
7.85138 + 3.20272I 2.27436 3.02667I
u = 0.009997 0.555746I
a = 0.044009 1.061120I
b = 0.10010 1.81655I
7.85138 3.20272I 2.27436 + 3.02667I
u = 0.554632
a = 1.06641
b = 0.304951
1.12795 9.38540
13
II. I
v
1
= ha, v
3
+ 2v
2
+ b 3v + 1, v
4
2v
3
+ 3v
2
v + 1i
(i) Arc colorings
a
4
=
v
0
a
7
=
1
0
a
8
=
1
0
a
1
=
0
v
3
2v
2
+ 3v 1
a
9
=
1
0
a
10
=
1
v
3
v
2
+ v + 2
a
3
=
v
0
a
2
=
v
v
3
2v
2
+ 3v 1
a
5
=
0
v
3
+ 2v
2
3v + 1
a
12
=
v
3
+ 2v
2
3v + 1
v
3
+ 3v
2
4v + 2
a
11
=
v
3
+ v
2
v 1
v
3
+ 2v
2
2v
a
6
=
v
3
+ 2v
2
3v + 1
v
3
+ 2v
2
3v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = v
3
+ 2v
2
+ 3v 12
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
7
, c
8
u
4
c
4
(u + 1)
4
c
5
, c
9
, c
10
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
6
u
4
+ u
3
+ u
2
+ 1
c
11
u
4
u
3
+ u
2
+ 1
c
12
u
4
u
3
+ 3u
2
2u + 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
, c
8
y
4
c
5
, c
9
, c
10
c
12
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
6
, c
11
y
4
+ y
3
+ 3y
2
+ 2y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.043315 + 0.641200I
a = 0
b = 0.10488 + 1.55249I
8.43568 3.16396I 12.63523 + 2.29471I
v = 0.043315 0.641200I
a = 0
b = 0.10488 1.55249I
8.43568 + 3.16396I 12.63523 2.29471I
v = 0.95668 + 1.22719I
a = 0
b = 0.395123 + 0.506844I
1.43393 1.41510I 6.86477 + 6.85627I
v = 0.95668 1.22719I
a = 0
b = 0.395123 0.506844I
1.43393 + 1.41510I 6.86477 6.85627I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
83
+ 45u
82
+ ··· + 4u + 1)
c
2
((u 1)
4
)(u
83
5u
82
+ ··· 6u + 1)
c
3
, c
7
u
4
(u
83
+ u
82
+ ··· + 24u + 16)
c
4
((u + 1)
4
)(u
83
5u
82
+ ··· 6u + 1)
c
5
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
83
+ 2u
82
+ ··· + 15190u + 7769)
c
6
(u
4
+ u
3
+ u
2
+ 1)(u
83
+ 2u
82
+ ··· + 2u + 1)
c
8
u
4
(u
83
27u
82
+ ··· 5056u + 256)
c
9
, c
10
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
83
20u
82
+ ··· + 6u + 1)
c
11
(u
4
u
3
+ u
2
+ 1)(u
83
+ 2u
82
+ ··· + 2u + 1)
c
12
(u
4
u
3
+ 3u
2
2u + 1)(u
83
20u
82
+ ··· + 6u + 1)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
4
)(y
83
9y
82
+ ··· + 44y 1)
c
2
, c
4
((y 1)
4
)(y
83
45y
82
+ ··· + 4y 1)
c
3
, c
7
y
4
(y
83
+ 27y
82
+ ··· 5056y 256)
c
5
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (y
83
+ 28y
82
+ ··· + 953082182y 60357361)
c
6
, c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
83
+ 20y
82
+ ··· + 6y 1)
c
8
y
4
(y
83
+ 51y
82
+ ··· + 1724416y 65536)
c
9
, c
10
, c
12
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
83
+ 88y
82
+ ··· + 190y 1)
19