12a
0093
(K12a
0093
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 11 4 12 1 6 7 9
Solving Sequence
5,10
6 11
3,7
2 1 4 8 9 12
c
5
c
10
c
6
c
2
c
1
c
4
c
7
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h3.70075 × 10
79
u
71
3.81232 × 10
79
u
70
+ ··· + 7.87156 × 10
79
b + 2.01580 × 10
80
,
2.44050 × 10
79
u
71
+ 6.22842 × 10
79
u
70
+ ··· + 1.57431 × 10
80
a 3.01318 × 10
80
,
u
72
2u
71
+ ··· + 24u + 8i
I
u
2
= h−4a
2
u + 2a
2
+ 4au + 7b + 12a 6u 4, 4a
3
6a
2
u 8a
2
+ 2au + 8a u 2, u
2
2i
I
u
3
= hb + 1, u
2
+ a + u + 2, u
3
u
2
2u + 1i
I
v
1
= ha, v
2
+ b 3v + 1, v
3
+ 2v
2
3v + 1i
* 4 irreducible components of dim
C
= 0, with total 84 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.70 × 10
79
u
71
3.81 × 10
79
u
70
+ · · · + 7.87 × 10
79
b + 2.02 ×
10
80
, 2.44 × 10
79
u
71
+ 6.23 × 10
79
u
70
+ · · · + 1.57 × 10
80
a 3.01 ×
10
80
, u
72
2u
71
+ · · · + 24u + 8i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
0.155020u
71
0.395628u
70
+ ··· 37.7884u + 1.91396
0.470142u
71
+ 0.484315u
70
+ ··· + 4.00972u 2.56087
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.315123u
71
+ 0.0886872u
70
+ ··· 33.7787u 0.646903
0.470142u
71
+ 0.484315u
70
+ ··· + 4.00972u 2.56087
a
1
=
1.73551u
71
3.17752u
70
+ ··· 2.59470u + 17.5888
2.40461u
71
+ 2.78349u
70
+ ··· + 14.3590u 6.88864
a
4
=
0.485716u
71
1.14719u
70
+ ··· 26.7644u + 3.00194
0.981957u
71
+ 1.07115u
70
+ ··· + 3.98093u 0.323764
a
8
=
0.556973u
71
+ 1.35772u
70
+ ··· 20.8031u 10.0464
0.333969u
71
1.38159u
70
+ ··· + 31.1725u + 18.7963
a
9
=
0.363304u
71
1.99774u
70
+ ··· + 35.4662u + 20.3509
0.618338u
71
+ 1.54449u
70
+ ··· 40.5582u 23.2300
a
12
=
u
3
2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5.63154u
71
8.59389u
70
+ ··· 116.925u 7.71745
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
72
+ 37u
71
+ ··· + 107u + 1
c
2
, c
4
u
72
7u
71
+ ··· + 5u + 1
c
3
, c
7
u
72
+ 2u
71
+ ··· + 36u 8
c
5
, c
6
, c
10
c
11
u
72
2u
71
+ ··· + 24u + 8
c
8
, c
9
, c
12
u
72
+ 5u
71
+ ··· + 41u + 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
72
+ 3y
71
+ ··· 8427y + 1
c
2
, c
4
y
72
37y
71
+ ··· 107y + 1
c
3
, c
7
y
72
+ 30y
71
+ ··· 3280y + 64
c
5
, c
6
, c
10
c
11
y
72
88y
71
+ ··· 2752y + 64
c
8
, c
9
, c
12
y
72
73y
71
+ ··· + 1707y + 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.875758 + 0.429272I
a = 0.262678 + 0.101583I
b = 1.287090 0.279824I
8.31181 + 2.46798I 0
u = 0.875758 0.429272I
a = 0.262678 0.101583I
b = 1.287090 + 0.279824I
8.31181 2.46798I 0
u = 0.827261 + 0.504621I
a = 0.09772 + 2.12500I
b = 1.121890 0.521031I
7.76669 5.28143I 0
u = 0.827261 0.504621I
a = 0.09772 2.12500I
b = 1.121890 + 0.521031I
7.76669 + 5.28143I 0
u = 0.799643 + 0.671253I
a = 0.06752 + 1.80494I
b = 1.205120 0.572281I
6.25612 + 11.79520I 0
u = 0.799643 0.671253I
a = 0.06752 1.80494I
b = 1.205120 + 0.572281I
6.25612 11.79520I 0
u = 0.744414 + 0.572251I
a = 0.652228 1.062510I
b = 0.233482 + 0.906675I
3.31502 + 6.41563I 0
u = 0.744414 0.572251I
a = 0.652228 + 1.062510I
b = 0.233482 0.906675I
3.31502 6.41563I 0
u = 0.786461 + 0.477851I
a = 0.68942 1.66417I
b = 1.084140 + 0.564418I
0.01076 7.70106I 0
u = 0.786461 0.477851I
a = 0.68942 + 1.66417I
b = 1.084140 0.564418I
0.01076 + 7.70106I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.857434 + 0.264670I
a = 1.02566 1.10598I
b = 0.327725 + 0.634372I
5.42751 0.70274I 0
u = 0.857434 0.264670I
a = 1.02566 + 1.10598I
b = 0.327725 0.634372I
5.42751 + 0.70274I 0
u = 0.879575 + 0.163473I
a = 1.027390 + 0.651113I
b = 0.950405 0.535597I
0.97750 + 2.84413I 0
u = 0.879575 0.163473I
a = 1.027390 0.651113I
b = 0.950405 + 0.535597I
0.97750 2.84413I 0
u = 0.199773 + 0.851046I
a = 0.996478 0.881875I
b = 1.147690 + 0.510260I
4.44972 6.76334I 12.00000 + 0.I
u = 0.199773 0.851046I
a = 0.996478 + 0.881875I
b = 1.147690 0.510260I
4.44972 + 6.76334I 12.00000 + 0.I
u = 0.626406 + 0.476151I
a = 0.717312 + 0.408958I
b = 0.380216 0.718908I
2.05866 2.81348I 9.50002 + 4.98668I
u = 0.626406 0.476151I
a = 0.717312 0.408958I
b = 0.380216 + 0.718908I
2.05866 + 2.81348I 9.50002 4.98668I
u = 1.181710 + 0.470204I
a = 0.1216000 0.0229142I
b = 1.094920 0.394215I
8.72689 + 2.18989I 0
u = 1.181710 0.470204I
a = 0.1216000 + 0.0229142I
b = 1.094920 + 0.394215I
8.72689 2.18989I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.611935 + 0.376277I
a = 0.283350 + 0.621830I
b = 0.649429 + 0.513270I
0.07524 1.41658I 12.97255 + 1.10740I
u = 0.611935 0.376277I
a = 0.283350 0.621830I
b = 0.649429 0.513270I
0.07524 + 1.41658I 12.97255 1.10740I
u = 0.214744 + 0.682258I
a = 0.40025 + 1.69752I
b = 0.197456 0.697303I
1.72777 2.16585I 11.52549 + 1.08940I
u = 0.214744 0.682258I
a = 0.40025 1.69752I
b = 0.197456 + 0.697303I
1.72777 + 2.16585I 11.52549 1.08940I
u = 0.054234 + 0.691316I
a = 1.57683 1.56133I
b = 1.142460 + 0.370676I
5.43584 + 1.26277I 16.3916 0.1881I
u = 0.054234 0.691316I
a = 1.57683 + 1.56133I
b = 1.142460 0.370676I
5.43584 1.26277I 16.3916 + 0.1881I
u = 0.617110 + 0.307371I
a = 0.59785 2.50870I
b = 0.986315 + 0.384932I
2.03116 + 2.58391I 16.3746 6.6287I
u = 0.617110 0.307371I
a = 0.59785 + 2.50870I
b = 0.986315 0.384932I
2.03116 2.58391I 16.3746 + 6.6287I
u = 0.276521 + 0.561410I
a = 0.19398 1.44729I
b = 0.600878 + 0.650005I
3.08581 0.76384I 6.34873 + 2.59077I
u = 0.276521 0.561410I
a = 0.19398 + 1.44729I
b = 0.600878 0.650005I
3.08581 + 0.76384I 6.34873 2.59077I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.396880 + 0.035985I
a = 0.186911 + 0.763642I
b = 0.831473 0.725123I
1.87165 + 2.75314I 0
u = 1.396880 0.035985I
a = 0.186911 0.763642I
b = 0.831473 + 0.725123I
1.87165 2.75314I 0
u = 1.40156
a = 11.4734
b = 0.988970
8.19953 0
u = 0.092090 + 0.573260I
a = 0.770057 + 1.161670I
b = 0.953023 0.598994I
2.06822 + 4.08017I 7.94616 5.26935I
u = 0.092090 0.573260I
a = 0.770057 1.161670I
b = 0.953023 + 0.598994I
2.06822 4.08017I 7.94616 + 5.26935I
u = 0.550545 + 0.163361I
a = 1.57695 + 0.17909I
b = 1.110070 + 0.163246I
2.56966 0.57818I 16.8714 + 8.9218I
u = 0.550545 0.163361I
a = 1.57695 0.17909I
b = 1.110070 0.163246I
2.56966 + 0.57818I 16.8714 8.9218I
u = 1.42095 + 0.21273I
a = 0.542378 0.597190I
b = 0.590617 + 0.161261I
6.67741 0.58823I 0
u = 1.42095 0.21273I
a = 0.542378 + 0.597190I
b = 0.590617 0.161261I
6.67741 + 0.58823I 0
u = 1.47025
a = 0.911193
b = 0.327218
6.78796 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.481111 + 0.095743I
a = 0.79648 + 1.70877I
b = 0.865855 0.831513I
0.90495 + 3.07172I 20.6395 5.9253I
u = 0.481111 0.095743I
a = 0.79648 1.70877I
b = 0.865855 + 0.831513I
0.90495 3.07172I 20.6395 + 5.9253I
u = 1.53498 + 0.03198I
a = 0.438335 + 0.164331I
b = 0.058233 0.496424I
6.93072 0.11771I 0
u = 1.53498 0.03198I
a = 0.438335 0.164331I
b = 0.058233 + 0.496424I
6.93072 + 0.11771I 0
u = 1.58385 + 0.02369I
a = 0.055937 0.975650I
b = 0.910185 + 0.970380I
6.39453 3.47846I 0
u = 1.58385 0.02369I
a = 0.055937 + 0.975650I
b = 0.910185 0.970380I
6.39453 + 3.47846I 0
u = 1.58359 + 0.12100I
a = 0.233603 0.250046I
b = 0.219437 + 0.848024I
5.41979 + 4.93889I 0
u = 1.58359 0.12100I
a = 0.233603 + 0.250046I
b = 0.219437 0.848024I
5.41979 4.93889I 0
u = 1.58812 + 0.03042I
a = 1.228490 + 0.430142I
b = 1.230760 0.307392I
10.01110 + 1.19025I 0
u = 1.58812 0.03042I
a = 1.228490 0.430142I
b = 1.230760 + 0.307392I
10.01110 1.19025I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59443 + 0.07004I
a = 0.95915 + 1.33782I
b = 1.126480 0.469683I
9.64311 3.88422I 0
u = 1.59443 0.07004I
a = 0.95915 1.33782I
b = 1.126480 + 0.469683I
9.64311 + 3.88422I 0
u = 0.395087
a = 0.927031
b = 0.104752
0.588530 16.7510
u = 0.221019 + 0.289419I
a = 2.12036 + 0.93378I
b = 0.778490 0.216174I
0.944244 0.257791I 11.16562 1.59535I
u = 0.221019 0.289419I
a = 2.12036 0.93378I
b = 0.778490 + 0.216174I
0.944244 + 0.257791I 11.16562 + 1.59535I
u = 1.62768 + 0.17150I
a = 0.431502 + 0.570990I
b = 0.243814 1.044500I
11.3658 9.2318I 0
u = 1.62768 0.17150I
a = 0.431502 0.570990I
b = 0.243814 + 1.044500I
11.3658 + 9.2318I 0
u = 1.64174 + 0.14153I
a = 0.96072 + 1.05427I
b = 1.188910 0.551097I
8.31688 + 10.07720I 0
u = 1.64174 0.14153I
a = 0.96072 1.05427I
b = 1.188910 + 0.551097I
8.31688 10.07720I 0
u = 1.64839 + 0.08124I
a = 0.477835 + 0.762351I
b = 0.442405 0.890711I
14.0714 + 2.0898I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.64839 0.08124I
a = 0.477835 0.762351I
b = 0.442405 + 0.890711I
14.0714 2.0898I 0
u = 1.65163 + 0.14342I
a = 0.41603 1.43600I
b = 1.153970 + 0.638956I
16.2646 + 7.7641I 0
u = 1.65163 0.14342I
a = 0.41603 + 1.43600I
b = 1.153970 0.638956I
16.2646 7.7641I 0
u = 1.64915 + 0.20871I
a = 0.65126 1.32967I
b = 1.260260 + 0.616858I
14.5211 15.1783I 0
u = 1.64915 0.20871I
a = 0.65126 + 1.32967I
b = 1.260260 0.616858I
14.5211 + 15.1783I 0
u = 1.65979 + 0.11678I
a = 0.486333 0.039718I
b = 1.41864 + 0.27823I
17.0477 4.5612I 0
u = 1.65979 0.11678I
a = 0.486333 + 0.039718I
b = 1.41864 0.27823I
17.0477 + 4.5612I 0
u = 1.66435 + 0.06433I
a = 1.010600 0.515375I
b = 1.126480 + 0.439828I
9.85240 3.84777I 0
u = 1.66435 0.06433I
a = 1.010600 + 0.515375I
b = 1.126480 0.439828I
9.85240 + 3.84777I 0
u = 0.229806
a = 13.4178
b = 0.871083
2.90601 61.9330
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.78412 + 0.04723I
a = 0.534525 0.028315I
b = 1.096760 + 0.161668I
19.6154 0.2070I 0
u = 1.78412 0.04723I
a = 0.534525 + 0.028315I
b = 1.096760 0.161668I
19.6154 + 0.2070I 0
12
II. I
u
2
=
h−4a
2
u+2a
2
+4au+7b+12a6u4, 4a
3
6a
2
u8a
2
+2au+8au2, u
2
2i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
2
a
11
=
u
u
a
3
=
a
4
7
a
2
u
4
7
au + ···
12
7
a +
4
7
a
7
=
1
0
a
2
=
4
7
a
2
u
4
7
au + ···
5
7
a +
4
7
4
7
a
2
u
4
7
au + ···
12
7
a +
4
7
a
1
=
1
2
u
2
7
a
2
u +
5
7
au + ··· +
8
7
a +
2
7
a
4
=
3
7
a
2
u +
10
7
au + ··· +
16
7
a
3
7
2
7
a
2
u +
9
7
au + ··· +
20
7
a
9
7
a
8
=
1
2
u
2
7
a
2
u +
5
7
au + ··· +
8
7
a +
2
7
a
9
=
1
2
u
2
7
a
2
u +
5
7
au + ··· +
8
7
a +
2
7
a
12
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16
7
a
2
u
8
7
a
2
16
7
au
48
7
a +
24
7
u
124
7
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
(u
3
+ u
2
+ 2u + 1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
10
c
11
(u
2
2)
3
c
8
, c
9
(u + 1)
6
c
12
(u 1)
6
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
6
, c
10
c
11
(y 2)
6
c
8
, c
9
, c
12
(y 1)
6
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 0.361309 + 0.347270I
b = 0.877439 0.744862I
3.55561 + 2.82812I 16.4902 2.9794I
u = 1.41421
a = 0.361309 0.347270I
b = 0.877439 + 0.744862I
3.55561 2.82812I 16.4902 + 2.9794I
u = 1.41421
a = 3.39870
b = 0.754878
7.69319 23.0200
u = 1.41421
a = 0.116187 + 1.142450I
b = 0.877439 0.744862I
3.55561 + 2.82812I 16.4902 2.9794I
u = 1.41421
a = 0.116187 1.142450I
b = 0.877439 + 0.744862I
3.55561 2.82812I 16.4902 + 2.9794I
u = 1.41421
a = 0.111054
b = 0.754878
7.69319 23.0200
16
III. I
u
3
= hb + 1, u
2
+ a + u + 2, u
3
u
2
2u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
2
u + 1
a
3
=
u
2
u 2
1
a
7
=
u
2
+ 1
u
2
u + 1
a
2
=
u
2
u 3
1
a
1
=
1
0
a
4
=
u
2
u 2
1
a
8
=
u
2
+ 1
u
2
u + 1
a
9
=
u
u
a
12
=
u
2
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ 4u 16
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
7
u
3
c
4
(u + 1)
3
c
5
, c
6
, c
8
c
9
u
3
u
2
2u + 1
c
10
, c
11
, c
12
u
3
+ u
2
2u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
7
y
3
c
5
, c
6
, c
8
c
9
, c
10
, c
11
c
12
y
3
5y
2
+ 6y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.24698
a = 0.801938
b = 1.00000
7.98968 19.4330
u = 0.445042
a = 2.24698
b = 1.00000
2.34991 14.0220
u = 1.80194
a = 0.554958
b = 1.00000
19.2692 5.54530
20
IV. I
v
1
= ha, v
2
+ b 3v + 1, v
3
+ 2v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
v
0
a
6
=
1
0
a
11
=
v
0
a
3
=
0
v
2
+ 3v 1
a
7
=
1
0
a
2
=
v
2
+ 3v 1
v
2
+ 3v 1
a
1
=
v
2
+ 3v 1
v
2
2v + 3
a
4
=
2v
2
5v + 4
2v
2
5v + 3
a
8
=
v
2
3v + 1
v
2
+ 2v 3
a
9
=
v
2
2v + 1
v
2
+ 2v 3
a
12
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2v 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
, c
6
, c
10
c
11
u
3
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
9
(u 1)
3
c
12
(u + 1)
3
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
y
3
y
2
+ 2y 1
c
5
, c
6
, c
10
c
11
y
3
c
8
, c
9
, c
12
(y 1)
3
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.539798 + 0.182582I
a = 0
b = 0.877439 + 0.744862I
1.37919 2.82812I 7.07960 0.36516I
v = 0.539798 0.182582I
a = 0
b = 0.877439 0.744862I
1.37919 + 2.82812I 7.07960 + 0.36516I
v = 3.07960
a = 0
b = 0.754878
2.75839 0.159190
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
3
u
2
+ 2u 1)
3
(u
72
+ 37u
71
+ ··· + 107u + 1)
c
2
((u 1)
3
)(u
3
+ u
2
1)
3
(u
72
7u
71
+ ··· + 5u + 1)
c
3
u
3
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
72
+ 2u
71
+ ··· + 36u 8)
c
4
((u + 1)
3
)(u
3
u
2
+ 1)
3
(u
72
7u
71
+ ··· + 5u + 1)
c
5
, c
6
u
3
(u
2
2)
3
(u
3
u
2
2u + 1)(u
72
2u
71
+ ··· + 24u + 8)
c
7
u
3
(u
3
u
2
+ 2u 1)
2
(u
3
+ u
2
+ 2u + 1)(u
72
+ 2u
71
+ ··· + 36u 8)
c
8
, c
9
((u 1)
3
)(u + 1)
6
(u
3
u
2
2u + 1)(u
72
+ 5u
71
+ ··· + 41u + 7)
c
10
, c
11
u
3
(u
2
2)
3
(u
3
+ u
2
2u 1)(u
72
2u
71
+ ··· + 24u + 8)
c
12
((u 1)
6
)(u + 1)
3
(u
3
+ u
2
2u 1)(u
72
+ 5u
71
+ ··· + 41u + 7)
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
3
)(y
3
+ 3y
2
+ 2y 1)
3
(y
72
+ 3y
71
+ ··· 8427y + 1)
c
2
, c
4
((y 1)
3
)(y
3
y
2
+ 2y 1)
3
(y
72
37y
71
+ ··· 107y + 1)
c
3
, c
7
y
3
(y
3
+ 3y
2
+ 2y 1)
3
(y
72
+ 30y
71
+ ··· 3280y + 64)
c
5
, c
6
, c
10
c
11
y
3
(y 2)
6
(y
3
5y
2
+ 6y 1)(y
72
88y
71
+ ··· 2752y + 64)
c
8
, c
9
, c
12
((y 1)
9
)(y
3
5y
2
+ 6y 1)(y
72
73y
71
+ ··· + 1707y + 49)
26