12a
0096
(K12a
0096
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 10 11 4 1 12 6 7 9
Solving Sequence
6,10
11 7 12
2,5
3 1 4 8 9
c
10
c
6
c
11
c
5
c
2
c
1
c
4
c
7
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
59
+ 31u
57
+ ··· 4u
2
+ b, u
62
u
61
+ ··· + a 1, u
63
+ 2u
62
+ ··· + 2u 1i
I
u
2
= hu
4
2u
2
+ b + 2u, u
5
+ 3u
3
+ a + 1, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 69 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
59
+31u
57
+· · ·4u
2
+b, u
62
u
61
+· · ·+a 1, u
63
+2u
62
+· · ·+2u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
62
+ u
61
+ ··· + 2u + 1
u
59
31u
57
+ ··· 3u
3
+ 4u
2
a
5
=
u
u
a
3
=
2u
62
+ u
61
+ ··· 4u
2
+ 5u
u
62
33u
60
+ ··· + 3u 1
a
1
=
u
10
+ 5u
8
8u
6
+ 5u
4
3u
2
+ 1
u
12
+ 6u
10
12u
8
+ 8u
6
u
4
+ 2u
2
a
4
=
u
61
32u
59
+ ··· + u + 1
u
62
+ 33u
60
+ ··· 2u + 1
a
8
=
u
14
7u
12
+ 18u
10
21u
8
+ 14u
6
10u
4
+ 4u
2
1
u
16
8u
14
+ 24u
12
32u
10
+ 18u
8
8u
6
+ 8u
4
a
9
=
u
6
+ 3u
4
2u
2
+ 1
u
8
+ 4u
6
4u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
61
u
60
+ ··· + 2u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
63
+ 27u
62
+ ··· + 95u + 1
c
2
, c
4
u
63
7u
62
+ ··· + u + 1
c
3
, c
7
u
63
+ u
62
+ ··· + 192u + 64
c
5
, c
6
, c
10
c
11
u
63
2u
62
+ ··· + 2u + 1
c
8
, c
9
, c
12
u
63
8u
62
+ ··· + 6u + 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
63
+ 25y
62
+ ··· + 5299y 1
c
2
, c
4
y
63
27y
62
+ ··· + 95y 1
c
3
, c
7
y
63
+ 39y
62
+ ··· 40960y 4096
c
5
, c
6
, c
10
c
11
y
63
68y
62
+ ··· + 14y 1
c
8
, c
9
, c
12
y
63
+ 64y
62
+ ··· 2246y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.552072 + 0.648887I
a = 0.477044 + 0.191255I
b = 1.98574 0.28222I
8.36290 11.10910I 8.86571 + 8.37495I
u = 0.552072 0.648887I
a = 0.477044 0.191255I
b = 1.98574 + 0.28222I
8.36290 + 11.10910I 8.86571 8.37495I
u = 0.533877 + 0.656255I
a = 0.086296 + 0.604333I
b = 0.591871 0.592997I
10.28220 4.95595I 6.40227 + 3.95794I
u = 0.533877 0.656255I
a = 0.086296 0.604333I
b = 0.591871 + 0.592997I
10.28220 + 4.95595I 6.40227 3.95794I
u = 0.518166 + 0.638255I
a = 0.239548 + 0.425049I
b = 1.50926 + 0.75312I
4.80189 + 4.67051I 9.56411 5.84070I
u = 0.518166 0.638255I
a = 0.239548 0.425049I
b = 1.50926 0.75312I
4.80189 4.67051I 9.56411 + 5.84070I
u = 0.475260 + 0.668900I
a = 0.500436 0.356756I
b = 0.840809 0.212539I
10.45670 + 0.49427I 5.93156 + 2.06629I
u = 0.475260 0.668900I
a = 0.500436 + 0.356756I
b = 0.840809 + 0.212539I
10.45670 0.49427I 5.93156 2.06629I
u = 0.453215 + 0.669802I
a = 0.35281 + 1.85601I
b = 0.317027 + 0.198250I
8.65681 + 6.66761I 8.01120 2.46984I
u = 0.453215 0.669802I
a = 0.35281 1.85601I
b = 0.317027 0.198250I
8.65681 6.66761I 8.01120 + 2.46984I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.500444 + 0.632445I
a = 0.016435 1.256630I
b = 1.040210 + 0.063749I
3.24652 2.14201I 8.59063 + 3.32182I
u = 0.500444 0.632445I
a = 0.016435 + 1.256630I
b = 1.040210 0.063749I
3.24652 + 2.14201I 8.59063 3.32182I
u = 0.484205 + 0.643677I
a = 0.75821 1.21698I
b = 0.773190 + 0.091630I
4.90236 0.33637I 9.15743 0.38817I
u = 0.484205 0.643677I
a = 0.75821 + 1.21698I
b = 0.773190 0.091630I
4.90236 + 0.33637I 9.15743 + 0.38817I
u = 0.657206 + 0.383548I
a = 0.498372 + 0.026703I
b = 2.07884 + 0.04909I
0.73856 + 7.23469I 12.7532 9.6424I
u = 0.657206 0.383548I
a = 0.498372 0.026703I
b = 2.07884 0.04909I
0.73856 7.23469I 12.7532 + 9.6424I
u = 0.750394 + 0.085615I
a = 0.447881 + 0.312629I
b = 1.52225 0.54267I
0.91500 + 2.18703I 15.1580 2.5589I
u = 0.750394 0.085615I
a = 0.447881 0.312629I
b = 1.52225 + 0.54267I
0.91500 2.18703I 15.1580 + 2.5589I
u = 0.495914 + 0.538413I
a = 0.181479 + 0.681833I
b = 0.586391 + 0.071931I
2.22957 + 1.86380I 4.96531 3.49525I
u = 0.495914 0.538413I
a = 0.181479 0.681833I
b = 0.586391 0.071931I
2.22957 1.86380I 4.96531 + 3.49525I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.572206 + 0.430292I
a = 0.149585 + 0.569347I
b = 0.199905 0.583366I
2.16114 + 2.24871I 8.78086 4.77265I
u = 0.572206 0.430292I
a = 0.149585 0.569347I
b = 0.199905 + 0.583366I
2.16114 2.24871I 8.78086 + 4.77265I
u = 0.539929 + 0.300101I
a = 0.044166 + 0.631034I
b = 1.65764 + 0.85420I
1.85220 2.46880I 16.2123 + 7.6233I
u = 0.539929 0.300101I
a = 0.044166 0.631034I
b = 1.65764 0.85420I
1.85220 + 2.46880I 16.2123 7.6233I
u = 1.398670 + 0.035211I
a = 0.815049 0.521609I
b = 1.42294 0.01679I
1.87097 2.75507I 0
u = 1.398670 0.035211I
a = 0.815049 + 0.521609I
b = 1.42294 + 0.01679I
1.87097 + 2.75507I 0
u = 0.259599 + 0.510135I
a = 1.097040 + 0.502994I
b = 0.487176 0.027827I
3.10941 + 0.98990I 5.62147 3.24587I
u = 0.259599 0.510135I
a = 1.097040 0.502994I
b = 0.487176 + 0.027827I
3.10941 0.98990I 5.62147 + 3.24587I
u = 0.155783 + 0.518364I
a = 0.34678 + 2.21283I
b = 0.279971 + 0.161759I
2.26897 4.12732I 7.16888 + 3.41220I
u = 0.155783 0.518364I
a = 0.34678 2.21283I
b = 0.279971 0.161759I
2.26897 + 4.12732I 7.16888 3.41220I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.500479 + 0.194028I
a = 0.284102 1.118860I
b = 1.55555 0.14096I
2.49270 + 0.60644I 15.4557 10.2077I
u = 0.500479 0.194028I
a = 0.284102 + 1.118860I
b = 1.55555 + 0.14096I
2.49270 0.60644I 15.4557 + 10.2077I
u = 1.47733 + 0.20560I
a = 0.725820 + 0.543718I
b = 1.393370 0.049721I
2.40189 3.52842I 0
u = 1.47733 0.20560I
a = 0.725820 0.543718I
b = 1.393370 + 0.049721I
2.40189 + 3.52842I 0
u = 1.50553 + 0.02610I
a = 0.820872 0.167823I
b = 0.584397 + 0.092393I
6.94722 + 0.20354I 0
u = 1.50553 0.02610I
a = 0.820872 + 0.167823I
b = 0.584397 0.092393I
6.94722 0.20354I 0
u = 1.49289 + 0.20909I
a = 0.845794 0.652481I
b = 1.309020 0.075246I
4.05173 + 2.66575I 0
u = 1.49289 0.20909I
a = 0.845794 + 0.652481I
b = 1.309020 + 0.075246I
4.05173 2.66575I 0
u = 1.50358 + 0.19450I
a = 0.475568 0.695908I
b = 0.009106 0.203705I
1.59595 2.66985I 0
u = 1.50358 0.19450I
a = 0.475568 + 0.695908I
b = 0.009106 + 0.203705I
1.59595 + 2.66985I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.51480 + 0.19165I
a = 2.26122 + 0.97687I
b = 3.13502 + 1.11443I
3.36903 + 5.10417I 0
u = 1.51480 0.19165I
a = 2.26122 0.97687I
b = 3.13502 1.11443I
3.36903 5.10417I 0
u = 1.53183 + 0.05064I
a = 3.83982 + 0.14262I
b = 4.60648 + 0.30137I
9.36673 1.46427I 0
u = 1.53183 0.05064I
a = 3.83982 0.14262I
b = 4.60648 0.30137I
9.36673 + 1.46427I 0
u = 1.52279 + 0.19719I
a = 1.54244 + 2.21672I
b = 2.17598 + 1.87956I
1.90943 7.69003I 0
u = 1.52279 0.19719I
a = 1.54244 2.21672I
b = 2.17598 1.87956I
1.90943 + 7.69003I 0
u = 1.53422 + 0.10683I
a = 0.273455 0.876541I
b = 0.465154 1.309920I
4.84076 4.12450I 0
u = 1.53422 0.10683I
a = 0.273455 + 0.876541I
b = 0.465154 + 1.309920I
4.84076 + 4.12450I 0
u = 1.53626 + 0.07185I
a = 3.07876 + 2.19965I
b = 3.75488 + 1.96290I
8.82652 + 3.73842I 0
u = 1.53626 0.07185I
a = 3.07876 2.19965I
b = 3.75488 1.96290I
8.82652 3.73842I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.53186 + 0.15244I
a = 1.54941 0.72159I
b = 1.94893 0.88041I
4.52737 4.30571I 0
u = 1.53186 0.15244I
a = 1.54941 + 0.72159I
b = 1.94893 + 0.88041I
4.52737 + 4.30571I 0
u = 1.52911 + 0.20775I
a = 0.822400 0.471262I
b = 0.592425 1.140080I
3.49790 + 8.09634I 0
u = 1.52911 0.20775I
a = 0.822400 + 0.471262I
b = 0.592425 + 1.140080I
3.49790 8.09634I 0
u = 1.53893 + 0.20501I
a = 2.79319 1.84720I
b = 3.58877 1.49346I
1.4654 + 14.2222I 0
u = 1.53893 0.20501I
a = 2.79319 + 1.84720I
b = 3.58877 + 1.49346I
1.4654 14.2222I 0
u = 1.56803 + 0.09676I
a = 3.77845 0.81683I
b = 4.48012 0.48475I
6.75258 8.93003I 0
u = 1.56803 0.09676I
a = 3.77845 + 0.81683I
b = 4.48012 + 0.48475I
6.75258 + 8.93003I 0
u = 1.57741 + 0.02042I
a = 3.19867 1.01092I
b = 3.77337 1.31247I
8.71900 1.82197I 0
u = 1.57741 0.02042I
a = 3.19867 + 1.01092I
b = 3.77337 + 1.31247I
8.71900 + 1.82197I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.403832
a = 0.621632
b = 0.331645
0.597749 16.5810
u = 0.217719 + 0.282787I
a = 1.35864 1.85170I
b = 0.495682 + 0.230950I
0.947414 + 0.254780I 11.01418 + 1.68068I
u = 0.217719 0.282787I
a = 1.35864 + 1.85170I
b = 0.495682 0.230950I
0.947414 0.254780I 11.01418 1.68068I
11
II.
I
u
2
= hu
4
2u
2
+ b + 2u, u
5
+ 3u
3
+ a + 1, u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
7
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
u
5
3u
3
1
u
4
+ 2u
2
2u
a
5
=
u
u
a
3
=
u
5
3u
3
+ u 1
u
4
+ 2u
2
u
a
1
=
u
u
a
4
=
u
5
3u
3
+ u 1
u
4
+ 2u
2
u
a
8
=
u
u
3
+ u
a
9
=
u
5
2u
3
u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
u
4
+ 6u
3
+ u
2
+ 2u 14
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
7
u
6
c
4
(u + 1)
6
c
5
, c
6
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
8
, c
9
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
10
, c
11
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
6
, c
10
c
11
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
8
, c
9
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 0.011399 0.918055I
b = 0.847526 + 0.083869I
1.31531 1.97241I 14.7121 + 3.8836I
u = 0.493180 0.575288I
a = 0.011399 + 0.918055I
b = 0.847526 0.083869I
1.31531 + 1.97241I 14.7121 3.8836I
u = 0.483672
a = 0.687021
b = 1.38049
2.38379 15.3880
u = 1.52087 + 0.16310I
a = 1.98288 + 0.88048I
b = 2.63293 + 0.95019I
5.34051 + 4.59213I 18.4963 3.9250I
u = 1.52087 0.16310I
a = 1.98288 0.88048I
b = 2.63293 0.95019I
5.34051 4.59213I 18.4963 + 3.9250I
u = 1.53904
a = 3.30155
b = 3.95130
9.30502 18.1960
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
63
+ 27u
62
+ ··· + 95u + 1)
c
2
((u 1)
6
)(u
63
7u
62
+ ··· + u + 1)
c
3
, c
7
u
6
(u
63
+ u
62
+ ··· + 192u + 64)
c
4
((u + 1)
6
)(u
63
7u
62
+ ··· + u + 1)
c
5
, c
6
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
63
2u
62
+ ··· + 2u + 1)
c
8
, c
9
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
63
8u
62
+ ··· + 6u + 7)
c
10
, c
11
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
63
2u
62
+ ··· + 2u + 1)
c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
63
8u
62
+ ··· + 6u + 7)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
63
+ 25y
62
+ ··· + 5299y 1)
c
2
, c
4
((y 1)
6
)(y
63
27y
62
+ ··· + 95y 1)
c
3
, c
7
y
6
(y
63
+ 39y
62
+ ··· 40960y 4096)
c
5
, c
6
, c
10
c
11
(y
6
7y
5
+ ··· 5y + 1)(y
63
68y
62
+ ··· + 14y 1)
c
8
, c
9
, c
12
(y
6
+ 5y
5
+ ··· 5y + 1)(y
63
+ 64y
62
+ ··· 2246y 49)
17