12a
0106
(K12a
0106
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 11 9 4 7 1 12 6 10
Solving Sequence
6,12
11
2,5
3 4 10 1 9 7 8
c
11
c
5
c
2
c
4
c
10
c
12
c
9
c
6
c
8
c
1
, c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
73
+ u
72
+ ··· 2u
2
+ b, u
43
+ 6u
41
+ ··· + a 2, u
75
+ 2u
74
+ ··· + 2u + 1i
I
u
2
= h−2u
2
+ b + 2u + 1, a + u, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
73
+u
72
+· · ·2u
2
+b, u
43
+6u
41
+· · ·+a2, u
75
+2u
74
+· · ·+2u+1i
(i) Arc colorings
a
6
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
2
=
u
43
6u
41
+ ··· 2u + 2
u
73
u
72
+ ··· 3u
3
+ 2u
2
a
5
=
u
u
3
+ u
a
3
=
u
74
u
73
+ ··· 4u + 1
u
74
u
73
+ ··· + 3u
2
u
a
4
=
u
74
u
73
+ ··· + 2u 2
u
74
+ u
73
+ ··· + 6u
3
3u
2
a
10
=
u
2
+ 1
u
2
a
1
=
u
4
u
2
+ 1
u
4
a
9
=
u
6
+ u
4
2u
2
+ 1
u
6
u
2
a
7
=
u
13
2u
11
+ 5u
9
6u
7
+ 6u
5
4u
3
+ u
u
13
u
11
+ 3u
9
2u
7
+ 2u
5
u
3
+ u
a
8
=
u
20
+ 3u
18
+ ··· u
2
+ 1
u
20
+ 2u
18
6u
16
+ 8u
14
11u
12
+ 10u
10
8u
8
+ 4u
6
3u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
74
+ 2u
73
+ ··· + 9u 11
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
75
+ 42u
74
+ ··· + 39u + 1
c
2
, c
4
u
75
4u
74
+ ··· u + 1
c
3
, c
7
u
75
+ u
74
+ ··· + 20u + 8
c
5
, c
11
u
75
+ 2u
74
+ ··· + 2u + 1
c
6
, c
8
u
75
21u
74
+ ··· 752u + 64
c
9
, c
10
, c
12
u
75
+ 20u
74
+ ··· + 14u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
75
14y
74
+ ··· + 943y 1
c
2
, c
4
y
75
42y
74
+ ··· + 39y 1
c
3
, c
7
y
75
+ 21y
74
+ ··· 752y 64
c
5
, c
11
y
75
20y
74
+ ··· + 14y 1
c
6
, c
8
y
75
+ 61y
74
+ ··· + 232704y 4096
c
9
, c
10
, c
12
y
75
+ 72y
74
+ ··· 10y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.887145 + 0.421919I
a = 1.304670 + 0.309765I
b = 1.36625 + 1.06588I
0.04333 6.34447I 7.93297 + 10.47635I
u = 0.887145 0.421919I
a = 1.304670 0.309765I
b = 1.36625 1.06588I
0.04333 + 6.34447I 7.93297 10.47635I
u = 0.990634 + 0.243871I
a = 0.370425 0.564934I
b = 0.509716 0.608237I
4.44660 + 0.09147I 11.59766 + 0.I
u = 0.990634 0.243871I
a = 0.370425 + 0.564934I
b = 0.509716 + 0.608237I
4.44660 0.09147I 11.59766 + 0.I
u = 1.000630 + 0.265543I
a = 2.03967 + 0.36176I
b = 1.38837 1.74230I
8.14996 1.57539I 15.1216 + 0.I
u = 1.000630 0.265543I
a = 2.03967 0.36176I
b = 1.38837 + 1.74230I
8.14996 + 1.57539I 15.1216 + 0.I
u = 1.002040 + 0.280364I
a = 2.56830 0.43571I
b = 1.18117 1.37862I
8.06174 + 4.47030I 0
u = 1.002040 0.280364I
a = 2.56830 + 0.43571I
b = 1.18117 + 1.37862I
8.06174 4.47030I 0
u = 0.997744 + 0.300446I
a = 0.162900 + 0.569242I
b = 0.500726 + 0.752913I
4.11035 5.87109I 0
u = 0.997744 0.300446I
a = 0.162900 0.569242I
b = 0.500726 0.752913I
4.11035 + 5.87109I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.023860 + 0.232154I
a = 2.01282 0.17234I
b = 1.11389 + 1.64325I
7.89110 4.43076I 0
u = 1.023860 0.232154I
a = 2.01282 + 0.17234I
b = 1.11389 1.64325I
7.89110 + 4.43076I 0
u = 0.930948 + 0.071026I
a = 1.266100 + 0.027107I
b = 1.047670 + 0.599871I
1.97213 1.46805I 10.98188 + 4.43556I
u = 0.930948 0.071026I
a = 1.266100 0.027107I
b = 1.047670 0.599871I
1.97213 + 1.46805I 10.98188 4.43556I
u = 1.023180 + 0.307631I
a = 2.48345 + 0.20439I
b = 1.21466 + 1.45040I
7.44212 10.73660I 0
u = 1.023180 0.307631I
a = 2.48345 0.20439I
b = 1.21466 1.45040I
7.44212 + 10.73660I 0
u = 0.745430 + 0.809040I
a = 0.366987 1.071930I
b = 2.70214 0.22546I
1.06539 5.24431I 0
u = 0.745430 0.809040I
a = 0.366987 + 1.071930I
b = 2.70214 + 0.22546I
1.06539 + 5.24431I 0
u = 0.882590 + 0.702538I
a = 0.829874 0.592338I
b = 1.79400 + 1.05298I
2.08360 2.69427I 0
u = 0.882590 0.702538I
a = 0.829874 + 0.592338I
b = 1.79400 1.05298I
2.08360 + 2.69427I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.743473 + 0.453790I
a = 0.007570 0.366607I
b = 0.316775 + 0.512887I
1.49999 2.25964I 3.17178 + 5.04191I
u = 0.743473 0.453790I
a = 0.007570 + 0.366607I
b = 0.316775 0.512887I
1.49999 + 2.25964I 3.17178 5.04191I
u = 0.795943 + 0.812291I
a = 0.495301 0.730597I
b = 0.970310 + 0.264145I
2.31304 1.29591I 0
u = 0.795943 0.812291I
a = 0.495301 + 0.730597I
b = 0.970310 0.264145I
2.31304 + 1.29591I 0
u = 0.786206 + 0.833290I
a = 0.548362 + 1.180140I
b = 3.10995 0.03398I
1.046790 0.233605I 0
u = 0.786206 0.833290I
a = 0.548362 1.180140I
b = 3.10995 + 0.03398I
1.046790 + 0.233605I 0
u = 0.788338 + 0.844997I
a = 0.39372 + 2.64094I
b = 3.47934 + 2.39014I
0.77118 + 3.07466I 0
u = 0.788338 0.844997I
a = 0.39372 2.64094I
b = 3.47934 2.39014I
0.77118 3.07466I 0
u = 0.795768 + 0.856610I
a = 0.458519 + 0.581639I
b = 0.661200 0.385202I
3.38785 4.33505I 0
u = 0.795768 0.856610I
a = 0.458519 0.581639I
b = 0.661200 + 0.385202I
3.38785 + 4.33505I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.784804 + 0.867935I
a = 0.16460 2.47990I
b = 3.54552 1.97189I
0.25516 9.43024I 0
u = 0.784804 0.867935I
a = 0.16460 + 2.47990I
b = 3.54552 + 1.97189I
0.25516 + 9.43024I 0
u = 0.761209 + 0.303390I
a = 0.66189 1.48897I
b = 0.843213 1.134480I
2.11424 + 2.43489I 12.3251 6.9587I
u = 0.761209 0.303390I
a = 0.66189 + 1.48897I
b = 0.843213 + 1.134480I
2.11424 2.43489I 12.3251 + 6.9587I
u = 0.875605 + 0.815188I
a = 1.64111 + 0.93843I
b = 0.07441 + 2.48036I
4.23581 1.11329I 0
u = 0.875605 0.815188I
a = 1.64111 0.93843I
b = 0.07441 2.48036I
4.23581 + 1.11329I 0
u = 0.891540 + 0.799179I
a = 1.006990 + 0.953772I
b = 2.96795 1.32514I
2.74184 + 2.99741I 0
u = 0.891540 0.799179I
a = 1.006990 0.953772I
b = 2.96795 + 1.32514I
2.74184 2.99741I 0
u = 0.858105 + 0.855314I
a = 0.72834 1.53155I
b = 1.71110 1.68955I
7.80149 3.18910I 0
u = 0.858105 0.855314I
a = 0.72834 + 1.53155I
b = 1.71110 + 1.68955I
7.80149 + 3.18910I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.911589 + 0.805325I
a = 0.91456 1.70167I
b = 1.01479 2.88671I
4.12505 4.94897I 0
u = 0.911589 0.805325I
a = 0.91456 + 1.70167I
b = 1.01479 + 2.88671I
4.12505 + 4.94897I 0
u = 0.880512 + 0.845442I
a = 0.187760 + 0.773523I
b = 0.238660 + 0.915735I
8.84457 + 1.81738I 0
u = 0.880512 0.845442I
a = 0.187760 0.773523I
b = 0.238660 0.915735I
8.84457 1.81738I 0
u = 0.965168 + 0.770733I
a = 0.697279 0.434511I
b = 1.42752 + 0.24371I
1.79639 4.64940I 0
u = 0.965168 0.770733I
a = 0.697279 + 0.434511I
b = 1.42752 0.24371I
1.79639 + 4.64940I 0
u = 0.982212 + 0.751243I
a = 1.32097 0.56552I
b = 2.17734 + 2.46253I
1.77467 0.61424I 0
u = 0.982212 0.751243I
a = 1.32097 + 0.56552I
b = 2.17734 2.46253I
1.77467 + 0.61424I 0
u = 0.923652 + 0.829415I
a = 0.726145 0.285385I
b = 0.224702 0.630733I
8.70938 + 4.41281I 0
u = 0.923652 0.829415I
a = 0.726145 + 0.285385I
b = 0.224702 + 0.630733I
8.70938 4.41281I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.730137 + 0.191745I
a = 0.848146 + 0.745655I
b = 2.01940 0.38270I
2.75312 0.71407I 10.56661 + 9.33379I
u = 0.730137 0.191745I
a = 0.848146 0.745655I
b = 2.01940 + 0.38270I
2.75312 + 0.71407I 10.56661 9.33379I
u = 0.976675 + 0.776780I
a = 1.35830 + 0.69537I
b = 2.55017 2.46709I
1.63091 + 6.25511I 0
u = 0.976675 0.776780I
a = 1.35830 0.69537I
b = 2.55017 + 2.46709I
1.63091 6.25511I 0
u = 0.944507 + 0.823662I
a = 1.48146 + 0.76707I
b = 0.86627 + 3.04060I
7.53164 + 9.43047I 0
u = 0.944507 0.823662I
a = 1.48146 0.76707I
b = 0.86627 3.04060I
7.53164 9.43047I 0
u = 0.980512 + 0.782944I
a = 2.68521 0.41044I
b = 2.09440 4.67862I
1.36386 9.14996I 0
u = 0.980512 0.782944I
a = 2.68521 + 0.41044I
b = 2.09440 + 4.67862I
1.36386 + 9.14996I 0
u = 0.982139 + 0.791682I
a = 0.527120 + 0.395419I
b = 1.306180 + 0.059161I
2.80938 + 10.47360I 0
u = 0.982139 0.791682I
a = 0.527120 0.395419I
b = 1.306180 0.059161I
2.80938 10.47360I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.992674 + 0.791962I
a = 2.52753 + 0.15259I
b = 2.39427 + 4.34125I
0.3915 + 15.6011I 0
u = 0.992674 0.791962I
a = 2.52753 0.15259I
b = 2.39427 4.34125I
0.3915 15.6011I 0
u = 0.473511 + 0.518700I
a = 0.569905 0.044011I
b = 0.573438 0.122440I
2.29195 1.37822I 0.58151 + 4.13567I
u = 0.473511 0.518700I
a = 0.569905 + 0.044011I
b = 0.573438 + 0.122440I
2.29195 + 1.37822I 0.58151 4.13567I
u = 0.067050 + 0.682615I
a = 0.17440 2.58690I
b = 0.05480 1.96512I
4.40078 + 7.33498I 7.71783 5.68958I
u = 0.067050 0.682615I
a = 0.17440 + 2.58690I
b = 0.05480 + 1.96512I
4.40078 7.33498I 7.71783 + 5.68958I
u = 0.643142
a = 0.787276
b = 0.179262
0.881194 11.4850
u = 0.311673 + 0.555828I
a = 0.20614 1.83508I
b = 0.354502 0.754446I
1.74635 + 2.74612I 2.00357 4.26795I
u = 0.311673 0.555828I
a = 0.20614 + 1.83508I
b = 0.354502 + 0.754446I
1.74635 2.74612I 2.00357 + 4.26795I
u = 0.016299 + 0.632498I
a = 0.07873 + 2.68758I
b = 0.42918 + 1.85147I
5.01681 1.39047I 8.94216 + 0.64791I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.016299 0.632498I
a = 0.07873 2.68758I
b = 0.42918 1.85147I
5.01681 + 1.39047I 8.94216 0.64791I
u = 0.064333 + 0.625670I
a = 1.135470 0.066066I
b = 0.327673 0.145405I
1.22393 + 2.66490I 4.46846 2.68862I
u = 0.064333 0.625670I
a = 1.135470 + 0.066066I
b = 0.327673 + 0.145405I
1.22393 2.66490I 4.46846 + 2.68862I
u = 0.363118 + 0.189476I
a = 2.22576 + 0.86434I
b = 0.348541 + 0.046158I
1.083860 0.035362I 8.47943 1.04313I
u = 0.363118 0.189476I
a = 2.22576 0.86434I
b = 0.348541 0.046158I
1.083860 + 0.035362I 8.47943 + 1.04313I
12
II. I
u
2
= h−2u
2
+ b + 2u + 1, a + u, u
3
u
2
+ 1i
(i) Arc colorings
a
6
=
0
u
a
12
=
1
0
a
11
=
1
u
2
a
2
=
u
2u
2
2u 1
a
5
=
u
u
2
+ u + 1
a
3
=
0
u
2
u
a
4
=
0
u
2
u
a
10
=
u
2
+ 1
u
2
a
1
=
u
u
2
u 1
a
9
=
0
u
a
7
=
0
u
a
8
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
+ u 14
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
3
c
3
, c
6
, c
7
c
8
u
3
c
4
(u + 1)
3
c
5
u
3
+ u
2
1
c
9
, c
10
u
3
u
2
+ 2u 1
c
11
u
3
u
2
+ 1
c
12
u
3
+ u
2
+ 2u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
3
c
3
, c
6
, c
7
c
8
y
3
c
5
, c
11
y
3
y
2
+ 2y 1
c
9
, c
10
, c
12
y
3
+ 3y
2
+ 2y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 0.744862I
b = 2.32472 + 1.12456I
1.37919 2.82812I 12.69240 + 3.35914I
u = 0.877439 0.744862I
a = 0.877439 + 0.744862I
b = 2.32472 1.12456I
1.37919 + 2.82812I 12.69240 3.35914I
u = 0.754878
a = 0.754878
b = 1.64944
2.75839 13.6150
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
75
+ 42u
74
+ ··· + 39u + 1)
c
2
((u 1)
3
)(u
75
4u
74
+ ··· u + 1)
c
3
, c
7
u
3
(u
75
+ u
74
+ ··· + 20u + 8)
c
4
((u + 1)
3
)(u
75
4u
74
+ ··· u + 1)
c
5
(u
3
+ u
2
1)(u
75
+ 2u
74
+ ··· + 2u + 1)
c
6
, c
8
u
3
(u
75
21u
74
+ ··· 752u + 64)
c
9
, c
10
(u
3
u
2
+ 2u 1)(u
75
+ 20u
74
+ ··· + 14u + 1)
c
11
(u
3
u
2
+ 1)(u
75
+ 2u
74
+ ··· + 2u + 1)
c
12
(u
3
+ u
2
+ 2u + 1)(u
75
+ 20u
74
+ ··· + 14u + 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
3
)(y
75
14y
74
+ ··· + 943y 1)
c
2
, c
4
((y 1)
3
)(y
75
42y
74
+ ··· + 39y 1)
c
3
, c
7
y
3
(y
75
+ 21y
74
+ ··· 752y 64)
c
5
, c
11
(y
3
y
2
+ 2y 1)(y
75
20y
74
+ ··· + 14y 1)
c
6
, c
8
y
3
(y
75
+ 61y
74
+ ··· + 232704y 4096)
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)(y
75
+ 72y
74
+ ··· 10y 1)
18