12a
0109
(K12a
0109
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 11 10 4 12 7 6 1 9
Solving Sequence
5,11 3,6
2 1 4 10 7 8 9 12
c
5
c
2
c
1
c
4
c
10
c
6
c
7
c
9
c
12
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.02927 × 10
100
u
87
6.39816 × 10
100
u
86
+ ··· + 3.58918 × 10
101
b + 2.49262 × 10
101
,
7.25285 × 10
101
u
87
+ 1.13095 × 10
102
u
86
+ ··· + 2.15351 × 10
102
a 5.93535 × 10
102
, u
88
+ 2u
87
+ ··· 40u 8i
I
u
2
= hb + 1, 4u
4
3u
3
16u
2
+ 3a 8u 10, u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1i
I
u
3
= h4a
2
u 6a
2
8au + 17b + 12a + 2u 20, 4a
3
+ 6a
2
u 8a
2
2au u 6, u
2
+ 2i
I
v
1
= ha, v
2
+ b + 3v + 1, v
3
2v
2
3v 1i
* 4 irreducible components of dim
C
= 0, with total 102 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.03 × 10
100
u
87
6.40 × 10
100
u
86
+ · · · + 3.59 × 10
101
b + 2.49 ×
10
101
, 7.25 × 10
101
u
87
+ 1.13 × 10
102
u
86
+ · · · + 2.15 × 10
102
a 5.94 ×
10
102
, u
88
+ 2u
87
+ · · · 40u 8i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
0.336792u
87
0.525165u
86
+ ··· + 5.92456u + 2.75613
0.140123u
87
+ 0.178262u
86
+ ··· 3.22318u 0.694480
a
6
=
1
u
2
a
2
=
0.196669u
87
0.346903u
86
+ ··· + 2.70138u + 2.06165
0.140123u
87
+ 0.178262u
86
+ ··· 3.22318u 0.694480
a
1
=
0.0645847u
87
0.103802u
86
+ ··· 3.32912u 1.32103
0.0244135u
87
0.0970148u
86
+ ··· + 5.00657u + 1.44969
a
4
=
0.0540904u
87
0.114055u
86
+ ··· 2.19327u + 2.15068
0.157753u
87
0.184210u
86
+ ··· + 5.70265u + 0.193558
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
8
=
0.0379577u
87
0.0552205u
86
+ ··· + 5.05922u + 1.39579
0.00232376u
87
+ 0.0655726u
86
+ ··· 3.90590u 1.43269
a
9
=
u
3
2u
u
5
+ 3u
3
+ u
a
12
=
0.173051u
87
0.352789u
86
+ ··· + 2.21047u 0.306496
0.0357757u
87
0.0453033u
86
+ ··· + 2.09794u + 0.712500
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.162012u
87
+ 0.0691568u
86
+ ··· + 10.5321u 2.78961
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
88
+ 43u
87
+ ··· + 5850u + 81
c
2
, c
4
u
88
9u
87
+ ··· + 12u + 9
c
3
, c
7
u
88
+ 2u
87
+ ··· 192u 288
c
5
, c
6
, c
9
c
10
u
88
+ 2u
87
+ ··· 40u 8
c
8
, c
12
u
88
5u
87
+ ··· 525u + 49
c
11
u
88
41u
87
+ ··· 246519u + 2401
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
88
+ 13y
87
+ ··· 26338446y + 6561
c
2
, c
4
y
88
43y
87
+ ··· 5850y + 81
c
3
, c
7
y
88
+ 42y
87
+ ··· + 59904y + 82944
c
5
, c
6
, c
9
c
10
y
88
+ 104y
87
+ ··· 448y + 64
c
8
, c
12
y
88
41y
87
+ ··· 246519y + 2401
c
11
y
88
+ 23y
87
+ ··· 42416044391y + 5764801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.544232 + 0.801981I
a = 0.45727 + 1.70633I
b = 1.122770 0.558543I
1.95733 + 7.43628I 0
u = 0.544232 0.801981I
a = 0.45727 1.70633I
b = 1.122770 + 0.558543I
1.95733 7.43628I 0
u = 0.639200 + 0.724714I
a = 0.19749 2.03333I
b = 1.172430 + 0.616645I
0.25275 13.11110I 0
u = 0.639200 0.724714I
a = 0.19749 + 2.03333I
b = 1.172430 0.616645I
0.25275 + 13.11110I 0
u = 0.425748 + 0.993580I
a = 0.064085 + 0.159980I
b = 0.957165 + 0.380322I
3.21813 + 0.79813I 0
u = 0.425748 0.993580I
a = 0.064085 0.159980I
b = 0.957165 0.380322I
3.21813 0.79813I 0
u = 0.589414 + 0.668596I
a = 0.901108 + 0.955267I
b = 0.339571 0.905352I
2.77273 7.53893I 0
u = 0.589414 0.668596I
a = 0.901108 0.955267I
b = 0.339571 + 0.905352I
2.77273 + 7.53893I 0
u = 0.521144 + 0.708575I
a = 0.09047 2.35621I
b = 1.035090 + 0.541644I
1.93302 + 6.75586I 0
u = 0.521144 0.708575I
a = 0.09047 + 2.35621I
b = 1.035090 0.541644I
1.93302 6.75586I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.454359 + 0.719803I
a = 0.108044 + 0.326009I
b = 1.287330 + 0.187629I
2.77018 4.12176I 0. + 7.16112I
u = 0.454359 0.719803I
a = 0.108044 0.326009I
b = 1.287330 0.187629I
2.77018 + 4.12176I 0. 7.16112I
u = 0.189661 + 0.796762I
a = 0.421221 + 0.469754I
b = 1.170030 0.256475I
4.00054 0.43094I 4.62005 1.23771I
u = 0.189661 0.796762I
a = 0.421221 0.469754I
b = 1.170030 + 0.256475I
4.00054 + 0.43094I 4.62005 + 1.23771I
u = 0.476204 + 0.665286I
a = 0.583867 0.579072I
b = 0.308494 + 0.733628I
0.39849 + 2.53090I 2.00000 3.36549I
u = 0.476204 0.665286I
a = 0.583867 + 0.579072I
b = 0.308494 0.733628I
0.39849 2.53090I 2.00000 + 3.36549I
u = 0.325850 + 0.749057I
a = 0.33571 + 2.12266I
b = 1.063440 0.409718I
3.62884 1.93734I 4.67467 + 2.40265I
u = 0.325850 0.749057I
a = 0.33571 2.12266I
b = 1.063440 + 0.409718I
3.62884 + 1.93734I 4.67467 2.40265I
u = 0.764680 + 0.260523I
a = 1.01456 + 1.01023I
b = 1.121010 0.587805I
1.64540 + 8.43286I 2.93830 6.25674I
u = 0.764680 0.260523I
a = 1.01456 1.01023I
b = 1.121010 + 0.587805I
1.64540 8.43286I 2.93830 + 6.25674I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.209318 + 1.208190I
a = 0.464577 + 0.697157I
b = 0.852854 0.450479I
3.00819 + 4.00876I 0
u = 0.209318 1.208190I
a = 0.464577 0.697157I
b = 0.852854 + 0.450479I
3.00819 4.00876I 0
u = 0.367904 + 0.650557I
a = 1.28515 + 1.07932I
b = 0.523066 0.570388I
0.39958 + 2.25212I 1.06124 3.79280I
u = 0.367904 0.650557I
a = 1.28515 1.07932I
b = 0.523066 + 0.570388I
0.39958 2.25212I 1.06124 + 3.79280I
u = 0.295855 + 1.218520I
a = 0.010588 + 0.192785I
b = 1.046980 0.516890I
3.02122 + 4.63137I 0
u = 0.295855 1.218520I
a = 0.010588 0.192785I
b = 1.046980 + 0.516890I
3.02122 4.63137I 0
u = 0.736276 + 0.098653I
a = 0.817831 0.970106I
b = 1.025650 + 0.511792I
0.17226 3.17277I 1.85523 + 2.82339I
u = 0.736276 0.098653I
a = 0.817831 + 0.970106I
b = 1.025650 0.511792I
0.17226 + 3.17277I 1.85523 2.82339I
u = 0.674195 + 0.305262I
a = 0.11126 1.73615I
b = 0.372533 + 0.786143I
3.86256 + 3.27144I 6.73775 1.69394I
u = 0.674195 0.305262I
a = 0.11126 + 1.73615I
b = 0.372533 0.786143I
3.86256 3.27144I 6.73775 + 1.69394I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.034179 + 0.718127I
a = 0.764549 0.742243I
b = 0.184555 + 0.451760I
1.22278 + 1.55214I 0.78508 5.01782I
u = 0.034179 0.718127I
a = 0.764549 + 0.742243I
b = 0.184555 0.451760I
1.22278 1.55214I 0.78508 + 5.01782I
u = 0.317676 + 0.640571I
a = 1.74066 1.75496I
b = 1.001370 + 0.622107I
3.82065 4.46578I 2.93072 + 6.78920I
u = 0.317676 0.640571I
a = 1.74066 + 1.75496I
b = 1.001370 0.622107I
3.82065 + 4.46578I 2.93072 6.78920I
u = 0.440566 + 0.518571I
a = 1.302340 0.305908I
b = 0.590084 0.713658I
5.03768 + 0.64765I 6.53702 + 1.45121I
u = 0.440566 0.518571I
a = 1.302340 + 0.305908I
b = 0.590084 + 0.713658I
5.03768 0.64765I 6.53702 1.45121I
u = 0.617215 + 0.203807I
a = 1.68584 + 1.45481I
b = 1.002130 0.427316I
0.43590 2.88040I 1.88878 + 2.99748I
u = 0.617215 0.203807I
a = 1.68584 1.45481I
b = 1.002130 + 0.427316I
0.43590 + 2.88040I 1.88878 2.99748I
u = 0.594706 + 0.256396I
a = 0.073072 + 1.290030I
b = 0.553067 0.541679I
1.61593 + 1.10166I 4.49842 4.17125I
u = 0.594706 0.256396I
a = 0.073072 1.290030I
b = 0.553067 + 0.541679I
1.61593 1.10166I 4.49842 + 4.17125I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.037223 + 1.354310I
a = 1.29186 + 1.33974I
b = 0.935436 0.213125I
4.84743 0.66518I 0
u = 0.037223 1.354310I
a = 1.29186 1.33974I
b = 0.935436 + 0.213125I
4.84743 + 0.66518I 0
u = 0.184148 + 1.365040I
a = 0.520576 0.880021I
b = 0.481633 + 0.586417I
1.360140 + 0.220167I 0
u = 0.184148 1.365040I
a = 0.520576 + 0.880021I
b = 0.481633 0.586417I
1.360140 0.220167I 0
u = 0.396296 + 0.432190I
a = 0.49246 1.73630I
b = 0.740300 + 0.830855I
5.31869 3.65991I 6.10187 + 9.13654I
u = 0.396296 0.432190I
a = 0.49246 + 1.73630I
b = 0.740300 0.830855I
5.31869 + 3.65991I 6.10187 9.13654I
u = 0.542158 + 0.117917I
a = 1.37098 + 1.98919I
b = 1.142410 0.181756I
1.021790 + 0.705294I 3.49954 4.37901I
u = 0.542158 0.117917I
a = 1.37098 1.98919I
b = 1.142410 + 0.181756I
1.021790 0.705294I 3.49954 + 4.37901I
u = 0.03018 + 1.52198I
a = 2.04233 1.47340I
b = 1.045690 + 0.315482I
5.53360 + 1.03148I 0
u = 0.03018 1.52198I
a = 2.04233 + 1.47340I
b = 1.045690 0.315482I
5.53360 1.03148I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.04131 + 1.52824I
a = 0.061906 + 0.831333I
b = 0.962138 0.868668I
1.82017 + 1.37348I 0
u = 0.04131 1.52824I
a = 0.061906 0.831333I
b = 0.962138 + 0.868668I
1.82017 1.37348I 0
u = 0.11035 + 1.53163I
a = 0.149288 0.272362I
b = 0.368366 0.654466I
1.82032 1.29038I 0
u = 0.11035 1.53163I
a = 0.149288 + 0.272362I
b = 0.368366 + 0.654466I
1.82032 + 1.29038I 0
u = 0.08013 + 1.53516I
a = 0.071720 0.991753I
b = 0.806978 + 0.935865I
1.34895 5.18025I 0
u = 0.08013 1.53516I
a = 0.071720 + 0.991753I
b = 0.806978 0.935865I
1.34895 + 5.18025I 0
u = 0.262252 + 0.372162I
a = 0.93452 + 1.46801I
b = 0.950259 0.771844I
4.71038 + 2.27505I 2.87495 + 6.92818I
u = 0.262252 0.372162I
a = 0.93452 1.46801I
b = 0.950259 + 0.771844I
4.71038 2.27505I 2.87495 6.92818I
u = 0.280491 + 0.286926I
a = 0.03250 5.56793I
b = 0.763793 + 0.248992I
0.742521 + 0.263079I 1.89432 10.85247I
u = 0.280491 0.286926I
a = 0.03250 + 5.56793I
b = 0.763793 0.248992I
0.742521 0.263079I 1.89432 + 10.85247I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.10435 + 1.59638I
a = 0.597044 + 0.707359I
b = 0.520082 0.766678I
8.09429 + 3.99340I 0
u = 0.10435 1.59638I
a = 0.597044 0.707359I
b = 0.520082 + 0.766678I
8.09429 3.99340I 0
u = 0.13215 + 1.59776I
a = 0.287968 0.352186I
b = 0.216304 + 0.908312I
7.29353 + 4.75365I 0
u = 0.13215 1.59776I
a = 0.287968 + 0.352186I
b = 0.216304 0.908312I
7.29353 4.75365I 0
u = 0.09037 + 1.60143I
a = 1.44988 0.84143I
b = 1.091120 + 0.543357I
3.91219 5.96968I 0
u = 0.09037 1.60143I
a = 1.44988 + 0.84143I
b = 1.091120 0.543357I
3.91219 + 5.96968I 0
u = 0.17781 + 1.59504I
a = 0.539469 + 0.440389I
b = 0.314437 0.996490I
4.83782 10.38830I 0
u = 0.17781 1.59504I
a = 0.539469 0.440389I
b = 0.314437 + 0.996490I
4.83782 + 10.38830I 0
u = 0.02758 + 1.60517I
a = 0.427081 0.575629I
b = 0.297892 + 0.763089I
9.20407 + 1.33304I 0
u = 0.02758 1.60517I
a = 0.427081 + 0.575629I
b = 0.297892 0.763089I
9.20407 1.33304I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.15240 + 1.60919I
a = 0.50275 1.61138I
b = 1.078540 + 0.619975I
9.79087 + 9.27121I 0
u = 0.15240 1.60919I
a = 0.50275 + 1.61138I
b = 1.078540 0.619975I
9.79087 9.27121I 0
u = 0.13042 + 1.61198I
a = 0.665204 + 0.200185I
b = 1.377650 + 0.211486I
10.71360 6.30775I 0
u = 0.13042 1.61198I
a = 0.665204 0.200185I
b = 1.377650 0.211486I
10.71360 + 6.30775I 0
u = 0.09497 + 1.61734I
a = 0.71777 + 1.37284I
b = 1.140320 0.532443I
11.73680 3.53945I 0
u = 0.09497 1.61734I
a = 0.71777 1.37284I
b = 1.140320 + 0.532443I
11.73680 + 3.53945I 0
u = 0.378309
a = 1.75496
b = 0.125481
1.01782 11.4040
u = 0.06578 + 1.62137I
a = 0.858345 + 0.218227I
b = 1.316490 0.299557I
12.27180 + 0.62227I 0
u = 0.06578 1.62137I
a = 0.858345 0.218227I
b = 1.316490 + 0.299557I
12.27180 0.62227I 0
u = 0.19926 + 1.61688I
a = 0.81358 1.44253I
b = 1.218140 + 0.634975I
7.6180 16.2777I 0
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.19926 1.61688I
a = 0.81358 + 1.44253I
b = 1.218140 0.634975I
7.6180 + 16.2777I 0
u = 0.15988 + 1.63933I
a = 0.89920 + 1.16202I
b = 1.204800 0.573189I
10.2649 + 10.1230I 0
u = 0.15988 1.63933I
a = 0.89920 1.16202I
b = 1.204800 + 0.573189I
10.2649 10.1230I 0
u = 0.00661 + 1.70566I
a = 0.785461 + 0.141099I
b = 1.083240 0.305675I
13.33910 + 4.11275I 0
u = 0.00661 1.70566I
a = 0.785461 0.141099I
b = 1.083240 + 0.305675I
13.33910 4.11275I 0
u = 0.09125 + 1.70355I
a = 0.686106 + 0.124440I
b = 0.983741 + 0.219632I
12.68530 + 2.74860I 0
u = 0.09125 1.70355I
a = 0.686106 0.124440I
b = 0.983741 0.219632I
12.68530 2.74860I 0
u = 0.227971
a = 3.59324
b = 0.877499
1.26625 9.48720
13
II.
I
u
2
= hb + 1, 4u
4
3u
3
16u
2
+ 3a 8u 10, u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
4
3
u
4
+ u
3
+
16
3
u
2
+
8
3
u +
10
3
1
a
6
=
1
u
2
a
2
=
4
3
u
4
+ u
3
+
16
3
u
2
+
8
3
u +
7
3
1
a
1
=
1
0
a
4
=
4
3
u
4
+ u
3
+
16
3
u
2
+
8
3
u +
10
3
1
a
10
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
2u
2
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
u
3
2u
u
4
u
3
3u
2
2u 1
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
58
9
u
4
+
13
3
u
3
+
211
9
u
2
+
128
9
u +
115
9
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
5
c
3
, c
7
u
5
c
4
(u + 1)
5
c
5
, c
6
, c
11
u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1
c
8
u
5
+ u
4
u
2
+ u + 1
c
9
, c
10
u
5
u
4
+ 4u
3
3u
2
+ 3u 1
c
12
u
5
u
4
+ u
2
+ u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
, c
6
, c
9
c
10
, c
11
y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1
c
8
, c
12
y
5
y
4
+ 4y
3
3y
2
+ 3y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.233677 + 0.885557I
a = 0.162657 + 0.410020I
b = 1.00000
3.46474 2.21397I 2.99716 + 4.40290I
u = 0.233677 0.885557I
a = 0.162657 0.410020I
b = 1.00000
3.46474 + 2.21397I 2.99716 4.40290I
u = 0.416284
a = 3.11537
b = 1.00000
0.762751 10.8010
u = 0.05818 + 1.69128I
a = 0.728361 + 0.139255I
b = 1.00000
12.60320 3.33174I 0.51443 + 5.79761I
u = 0.05818 1.69128I
a = 0.728361 0.139255I
b = 1.00000
12.60320 + 3.33174I 0.51443 5.79761I
17
III. I
u
3
=
h4a
2
u6a
2
8au+17b +12a +2u 20, 4a
3
+6a
2
u8a
2
2auu 6, u
2
+2i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
3
=
a
0.235294a
2
u + 0.470588au + ··· 0.705882a + 1.17647
a
6
=
1
2
a
2
=
0.235294a
2
u + 0.470588au + ··· + 0.294118a + 1.17647
0.235294a
2
u + 0.470588au + ··· 0.705882a + 1.17647
a
1
=
1
2
u
0.352941a
2
u 0.294118au + ··· + 0.941176a + 1.76471
a
4
=
0.411765a
2
u 0.823529au + ··· + 0.235294a 0.0588235
0.117647a
2
u 0.764706au + ··· + 1.64706a 0.411765
a
10
=
u
u
a
7
=
1
0
a
8
=
1
2
u
0.352941a
2
u 0.294118au + ··· + 0.941176a + 1.76471
a
9
=
0
u
a
12
=
1
2
u
0.352941a
2
u 0.294118au + ··· + 0.941176a + 1.76471
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16
17
a
2
u +
24
17
a
2
+
32
17
au
48
17
a
8
17
u +
80
17
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
+ u
2
1)
2
c
3
(u
3
+ u
2
+ 2u + 1)
2
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
9
c
10
(u
2
+ 2)
3
c
8
(u 1)
6
c
11
, c
12
(u + 1)
6
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
4
(y
3
y
2
+ 2y 1)
2
c
5
, c
6
, c
9
c
10
(y + 2)
6
c
8
, c
11
, c
12
(y 1)
6
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.520153 0.983610I
b = 0.877439 + 0.744862I
0.26574 2.82812I 3.50976 + 2.97945I
u = 1.414210I
a = 0.275030 + 0.506114I
b = 0.877439 0.744862I
0.26574 + 2.82812I 3.50976 2.97945I
u = 1.414210I
a = 1.75488 1.64382I
b = 0.754878
4.40332 3.01951 + 0.I
u = 1.414210I
a = 0.520153 + 0.983610I
b = 0.877439 0.744862I
0.26574 + 2.82812I 3.50976 2.97945I
u = 1.414210I
a = 0.275030 0.506114I
b = 0.877439 + 0.744862I
0.26574 2.82812I 3.50976 + 2.97945I
u = 1.414210I
a = 1.75488 + 1.64382I
b = 0.754878
4.40332 3.01951 + 0.I
21
IV. I
v
1
= ha, v
2
+ b + 3v + 1, v
3
2v
2
3v 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
v
0
a
3
=
0
v
2
3v 1
a
6
=
1
0
a
2
=
v
2
3v 1
v
2
3v 1
a
1
=
v
2
3v 1
v
2
+ 2v + 3
a
4
=
2v
2
+ 5v + 4
2v
2
+ 5v + 3
a
10
=
v
0
a
7
=
1
0
a
8
=
v
2
+ 3v + 1
v
2
2v 3
a
9
=
v
0
a
12
=
v
2
2v 1
v
2
+ 2v + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8v
2
26v 14
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
4
u
3
u
2
+ 1
c
5
, c
6
, c
9
c
10
u
3
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
11
(u + 1)
3
c
12
(u 1)
3
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
4
y
3
y
2
+ 2y 1
c
5
, c
6
, c
9
c
10
y
3
c
8
, c
11
, c
12
(y 1)
3
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.539798 + 0.182582I
a = 0
b = 0.877439 0.744862I
4.66906 + 2.82812I 2.09911 6.32406I
v = 0.539798 0.182582I
a = 0
b = 0.877439 + 0.744862I
4.66906 2.82812I 2.09911 + 6.32406I
v = 3.07960
a = 0
b = 0.754878
0.531480 18.1980
25
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
3
u
2
+ 2u 1)
3
(u
88
+ 43u
87
+ ··· + 5850u + 81)
c
2
((u 1)
5
)(u
3
+ u
2
1)
3
(u
88
9u
87
+ ··· + 12u + 9)
c
3
u
5
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
2
(u
88
+ 2u
87
+ ··· 192u 288)
c
4
((u + 1)
5
)(u
3
u
2
+ 1)
3
(u
88
9u
87
+ ··· + 12u + 9)
c
5
, c
6
u
3
(u
2
+ 2)
3
(u
5
+ u
4
+ ··· + 3u + 1)(u
88
+ 2u
87
+ ··· 40u 8)
c
7
u
5
(u
3
u
2
+ 2u 1)
2
(u
3
+ u
2
+ 2u + 1)(u
88
+ 2u
87
+ ··· 192u 288)
c
8
((u 1)
6
)(u + 1)
3
(u
5
+ u
4
+ ··· + u + 1)(u
88
5u
87
+ ··· 525u + 49)
c
9
, c
10
u
3
(u
2
+ 2)
3
(u
5
u
4
+ ··· + 3u 1)(u
88
+ 2u
87
+ ··· 40u 8)
c
11
(u + 1)
9
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
· (u
88
41u
87
+ ··· 246519u + 2401)
c
12
((u 1)
3
)(u + 1)
6
(u
5
u
4
+ ··· + u 1)(u
88
5u
87
+ ··· 525u + 49)
26
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)
5
(y
3
+ 3y
2
+ 2y 1)
3
· (y
88
+ 13y
87
+ ··· 26338446y + 6561)
c
2
, c
4
((y 1)
5
)(y
3
y
2
+ 2y 1)
3
(y
88
43y
87
+ ··· 5850y + 81)
c
3
, c
7
y
5
(y
3
+ 3y
2
+ 2y 1)
3
(y
88
+ 42y
87
+ ··· + 59904y + 82944)
c
5
, c
6
, c
9
c
10
y
3
(y + 2)
6
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
88
+ 104y
87
+ ··· 448y + 64)
c
8
, c
12
(y 1)
9
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
· (y
88
41y
87
+ ··· 246519y + 2401)
c
11
(y 1)
9
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
· (y
88
+ 23y
87
+ ··· 42416044391y + 5764801)
27