12a
0118
(K12a
0118
)
A knot diagram
1
Linearized knot diagam
3 5 8 2 12 10 9 4 7 1 6 11
Solving Sequence
4,9
8
1,3
2 5 7 10 11 6 12
c
8
c
3
c
1
c
4
c
7
c
9
c
10
c
6
c
12
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h4.88767 × 10
39
u
69
2.05229 × 10
38
u
68
+ ··· + 4.39249 × 10
39
b 2.55827 × 10
40
,
8.11974 × 10
39
u
69
+ 1.40212 × 10
39
u
68
+ ··· + 4.39249 × 10
39
a + 6.03714 × 10
40
, u
70
u
69
+ ··· 12u + 4i
I
v
1
= ha, b v 1, v
2
+ v + 1i
* 2 irreducible components of dim
C
= 0, with total 72 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4.89×10
39
u
69
2.05×10
38
u
68
+· · ·+4.39×10
39
b2.56×10
40
, 8.12×
10
39
u
69
+1.40×10
39
u
68
+· · ·+4.39×10
39
a+6.04×10
40
, u
70
u
69
+· · ·12u+4i
(i) Arc colorings
a
4
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
1
=
1.84855u
69
0.319208u
68
+ ··· + 27.0154u 13.7442
1.11273u
69
+ 0.0467228u
68
+ ··· 4.82981u + 5.82420
a
3
=
u
u
3
+ u
a
2
=
1.48418u
69
+ 0.111209u
68
+ ··· + 23.4623u 12.2083
0.723651u
69
+ 0.0742162u
68
+ ··· + 0.973362u + 4.02410
a
5
=
0.263656u
69
0.120324u
68
+ ··· 11.2277u + 1.80266
1.58490u
69
+ 0.439531u
68
+ ··· 15.7877u + 11.9416
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
u
2
+ 1
u
4
a
11
=
0.0566762u
69
+ 0.669845u
68
+ ··· + 13.0126u 7.86292
0.888567u
69
0.0370187u
68
+ ··· 13.3944u + 7.93011
a
6
=
u
6
+ u
4
2u
2
+ 1
u
6
+ u
2
a
12
=
0.233751u
69
+ 0.504289u
68
+ ··· + 14.1968u 7.56914
1.10374u
69
0.0225465u
68
+ ··· 15.1789u + 8.49479
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5.10416u
69
+ 0.201729u
68
+ ··· 71.8492u + 42.8742
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
70
+ 41u
69
+ ··· + 8u + 1
c
2
, c
4
u
70
3u
69
+ ··· 4u + 1
c
3
, c
8
u
70
+ u
69
+ ··· + 12u + 4
c
5
, c
11
u
70
+ 2u
69
+ ··· u + 1
c
6
, c
7
, c
9
u
70
15u
69
+ ··· 200u + 16
c
10
, c
12
u
70
+ 26u
69
+ ··· + 11u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
70
21y
69
+ ··· + 32y + 1
c
2
, c
4
y
70
41y
69
+ ··· 8y + 1
c
3
, c
8
y
70
15y
69
+ ··· 200y + 16
c
5
, c
11
y
70
+ 26y
69
+ ··· + 11y + 1
c
6
, c
7
, c
9
y
70
+ 77y
69
+ ··· + 2272y + 256
c
10
, c
12
y
70
+ 38y
69
+ ··· + 131y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.856012 + 0.547090I
a = 0.649388 + 0.664283I
b = 0.678669 1.019120I
4.18862 5.65542I 4.40524 + 8.10333I
u = 0.856012 0.547090I
a = 0.649388 0.664283I
b = 0.678669 + 1.019120I
4.18862 + 5.65542I 4.40524 8.10333I
u = 0.959078 + 0.338964I
a = 1.001140 0.104262I
b = 0.162521 0.081892I
3.53851 0.96635I 7.82026 + 0.I
u = 0.959078 0.338964I
a = 1.001140 + 0.104262I
b = 0.162521 + 0.081892I
3.53851 + 0.96635I 7.82026 + 0.I
u = 1.019040 + 0.052169I
a = 0.438523 0.219399I
b = 0.145309 0.850245I
4.86369 + 0.47978I 8.80207 + 0.I
u = 1.019040 0.052169I
a = 0.438523 + 0.219399I
b = 0.145309 + 0.850245I
4.86369 0.47978I 8.80207 + 0.I
u = 1.027600 + 0.119592I
a = 0.292337 0.225712I
b = 0.205304 0.936042I
4.71065 + 4.96261I 8.04821 7.02524I
u = 1.027600 0.119592I
a = 0.292337 + 0.225712I
b = 0.205304 + 0.936042I
4.71065 4.96261I 8.04821 + 7.02524I
u = 0.443664 + 0.844769I
a = 0.538375 + 0.337845I
b = 0.096708 0.471281I
1.19762 + 5.98159I 0.92170 7.29563I
u = 0.443664 0.844769I
a = 0.538375 0.337845I
b = 0.096708 + 0.471281I
1.19762 5.98159I 0.92170 + 7.29563I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.971885 + 0.410627I
a = 1.096340 0.187273I
b = 0.241292 0.293397I
2.85579 + 6.32679I 0
u = 0.971885 0.410627I
a = 1.096340 + 0.187273I
b = 0.241292 + 0.293397I
2.85579 6.32679I 0
u = 0.839415 + 0.383054I
a = 0.167368 + 0.464643I
b = 0.014763 1.203170I
0.17528 + 3.69433I 3.69302 7.55665I
u = 0.839415 0.383054I
a = 0.167368 0.464643I
b = 0.014763 + 1.203170I
0.17528 3.69433I 3.69302 + 7.55665I
u = 0.610913 + 0.667828I
a = 1.309430 + 0.512503I
b = 0.409626 + 0.116110I
5.02013 + 1.13894I 7.42078 0.58795I
u = 0.610913 0.667828I
a = 1.309430 0.512503I
b = 0.409626 0.116110I
5.02013 1.13894I 7.42078 + 0.58795I
u = 1.007960 + 0.482476I
a = 0.671035 + 0.116495I
b = 0.043821 0.531729I
1.70900 + 5.48430I 0
u = 1.007960 0.482476I
a = 0.671035 0.116495I
b = 0.043821 + 0.531729I
1.70900 5.48430I 0
u = 0.367833 + 0.798582I
a = 0.547260 + 0.067881I
b = 0.238259 0.220293I
0.434483 0.891477I 0.84820 + 1.91068I
u = 0.367833 0.798582I
a = 0.547260 0.067881I
b = 0.238259 + 0.220293I
0.434483 + 0.891477I 0.84820 1.91068I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.688189 + 0.495014I
a = 0.751143 0.485185I
b = 0.731991 + 0.183516I
1.70612 + 1.90353I 1.29790 4.47310I
u = 0.688189 0.495014I
a = 0.751143 + 0.485185I
b = 0.731991 0.183516I
1.70612 1.90353I 1.29790 + 4.47310I
u = 1.024030 + 0.531995I
a = 0.847273 + 0.128927I
b = 0.143783 0.298287I
0.79072 10.96610I 0
u = 1.024030 0.531995I
a = 0.847273 0.128927I
b = 0.143783 + 0.298287I
0.79072 + 10.96610I 0
u = 0.734851 + 0.407087I
a = 2.18354 + 0.39505I
b = 0.093179 + 0.722090I
1.82583 3.75171I 0.39629 + 7.22205I
u = 0.734851 0.407087I
a = 2.18354 0.39505I
b = 0.093179 0.722090I
1.82583 + 3.75171I 0.39629 7.22205I
u = 0.690889 + 0.415366I
a = 0.012282 + 0.905962I
b = 0.01931 1.84269I
1.97137 + 0.49525I 1.21375 + 3.39141I
u = 0.690889 0.415366I
a = 0.012282 0.905962I
b = 0.01931 + 1.84269I
1.97137 0.49525I 1.21375 3.39141I
u = 0.859252 + 0.847811I
a = 1.12334 1.09661I
b = 2.28142 0.13713I
3.86556 + 1.55363I 0
u = 0.859252 0.847811I
a = 1.12334 + 1.09661I
b = 2.28142 + 0.13713I
3.86556 1.55363I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.850893 + 0.884624I
a = 1.10267 1.18353I
b = 2.50998 + 0.01246I
5.50548 + 3.78563I 0
u = 0.850893 0.884624I
a = 1.10267 + 1.18353I
b = 2.50998 0.01246I
5.50548 3.78563I 0
u = 0.892645 + 0.859249I
a = 1.30636 + 1.71490I
b = 2.43773 + 0.22609I
7.66688 0.08605I 0
u = 0.892645 0.859249I
a = 1.30636 1.71490I
b = 2.43773 0.22609I
7.66688 + 0.08605I 0
u = 0.748791 + 0.124504I
a = 0.658521 0.117735I
b = 0.490170 + 0.349419I
1.174050 0.188994I 9.05728 + 0.63012I
u = 0.748791 0.124504I
a = 0.658521 + 0.117735I
b = 0.490170 0.349419I
1.174050 + 0.188994I 9.05728 0.63012I
u = 0.847834 + 0.919383I
a = 1.01430 + 1.70268I
b = 2.41082 0.49572I
7.59275 + 3.10194I 0
u = 0.847834 0.919383I
a = 1.01430 1.70268I
b = 2.41082 + 0.49572I
7.59275 3.10194I 0
u = 0.947471 + 0.820362I
a = 1.33084 1.01743I
b = 2.20960 0.80470I
3.59203 + 4.66330I 0
u = 0.947471 0.820362I
a = 1.33084 + 1.01743I
b = 2.20960 + 0.80470I
3.59203 4.66330I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.910528 + 0.864183I
a = 1.73727 + 1.07847I
b = 3.13501 + 0.34918I
9.32357 + 0.88762I 0
u = 0.910528 0.864183I
a = 1.73727 1.07847I
b = 3.13501 0.34918I
9.32357 0.88762I 0
u = 0.930113 + 0.845405I
a = 1.71742 + 0.97375I
b = 2.83461 + 0.49195I
7.54935 6.24533I 0
u = 0.930113 0.845405I
a = 1.71742 0.97375I
b = 2.83461 0.49195I
7.54935 + 6.24533I 0
u = 0.920205 + 0.860055I
a = 1.36723 + 1.80376I
b = 2.64509 + 0.40060I
9.29275 + 5.50542I 0
u = 0.920205 0.860055I
a = 1.36723 1.80376I
b = 2.64509 0.40060I
9.29275 5.50542I 0
u = 0.918074 + 0.869398I
a = 1.26727 1.14504I
b = 2.55438 0.51995I
9.50690 3.21924I 0
u = 0.918074 0.869398I
a = 1.26727 + 1.14504I
b = 2.55438 + 0.51995I
9.50690 + 3.21924I 0
u = 0.855164 + 0.943687I
a = 0.94923 + 1.77875I
b = 2.59048 0.67761I
9.18918 8.56419I 0
u = 0.855164 0.943687I
a = 0.94923 1.77875I
b = 2.59048 + 0.67761I
9.18918 + 8.56419I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.895190 + 0.908857I
a = 1.15254 + 1.83519I
b = 2.76109 0.15164I
13.44380 1.53868I 0
u = 0.895190 0.908857I
a = 1.15254 1.83519I
b = 2.76109 + 0.15164I
13.44380 + 1.53868I 0
u = 0.969783 + 0.836843I
a = 1.39145 1.05225I
b = 2.35136 0.97184I
5.13123 10.16380I 0
u = 0.969783 0.836843I
a = 1.39145 + 1.05225I
b = 2.35136 + 0.97184I
5.13123 + 10.16380I 0
u = 0.659724 + 0.283358I
a = 2.35512 + 0.08593I
b = 0.315252 + 0.457091I
1.17058 1.08332I 2.65386 2.01895I
u = 0.659724 0.283358I
a = 2.35512 0.08593I
b = 0.315252 0.457091I
1.17058 + 1.08332I 2.65386 + 2.01895I
u = 0.050359 + 0.716046I
a = 0.121117 0.635002I
b = 0.171445 + 0.650196I
0.76923 2.33777I 2.89499 + 4.69130I
u = 0.050359 0.716046I
a = 0.121117 + 0.635002I
b = 0.171445 0.650196I
0.76923 + 2.33777I 2.89499 4.69130I
u = 0.206898 + 0.671469I
a = 0.186235 0.643840I
b = 0.128642 + 0.779464I
0.55234 2.49681I 1.97976 + 2.11018I
u = 0.206898 0.671469I
a = 0.186235 + 0.643840I
b = 0.128642 0.779464I
0.55234 + 2.49681I 1.97976 2.11018I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.959789 + 0.876252I
a = 1.88469 + 0.94024I
b = 3.04179 + 0.99068I
13.2339 + 8.1232I 0
u = 0.959789 0.876252I
a = 1.88469 0.94024I
b = 3.04179 0.99068I
13.2339 8.1232I 0
u = 0.990634 + 0.851943I
a = 1.86694 + 0.78225I
b = 2.57901 + 1.20339I
7.13528 9.63342I 0
u = 0.990634 0.851943I
a = 1.86694 0.78225I
b = 2.57901 1.20339I
7.13528 + 9.63342I 0
u = 1.002140 + 0.866479I
a = 1.94196 + 0.77269I
b = 2.66868 + 1.42802I
8.7104 + 15.2194I 0
u = 1.002140 0.866479I
a = 1.94196 0.77269I
b = 2.66868 1.42802I
8.7104 15.2194I 0
u = 0.635965 + 0.105400I
a = 0.744808 + 0.354776I
b = 1.18138 0.88640I
0.93204 + 2.71089I 3.68951 7.69678I
u = 0.635965 0.105400I
a = 0.744808 0.354776I
b = 1.18138 + 0.88640I
0.93204 2.71089I 3.68951 + 7.69678I
u = 0.282390 + 0.481929I
a = 1.21593 0.82030I
b = 0.095269 + 0.174525I
1.68308 0.59288I 4.15264 + 0.08163I
u = 0.282390 0.481929I
a = 1.21593 + 0.82030I
b = 0.095269 0.174525I
1.68308 + 0.59288I 4.15264 0.08163I
11
II. I
v
1
= ha, b v 1, v
2
+ v + 1i
(i) Arc colorings
a
4
=
v
0
a
9
=
1
0
a
8
=
1
0
a
1
=
0
v + 1
a
3
=
v
0
a
2
=
v
v + 1
a
5
=
0
v 1
a
7
=
1
0
a
10
=
1
0
a
11
=
1
v
a
6
=
1
0
a
12
=
v + 1
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v 1
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
6
, c
7
c
8
, c
9
u
2
c
4
(u + 1)
2
c
5
, c
12
u
2
+ u + 1
c
10
, c
11
u
2
u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
6
, c
7
c
8
, c
9
y
2
c
5
, c
10
, c
11
c
12
y
2
+ y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000 + 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 2.02988I 3.00000 + 3.46410I
v = 0.500000 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 + 2.02988I 3.00000 3.46410I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
70
+ 41u
69
+ ··· + 8u + 1)
c
2
((u 1)
2
)(u
70
3u
69
+ ··· 4u + 1)
c
3
, c
8
u
2
(u
70
+ u
69
+ ··· + 12u + 4)
c
4
((u + 1)
2
)(u
70
3u
69
+ ··· 4u + 1)
c
5
(u
2
+ u + 1)(u
70
+ 2u
69
+ ··· u + 1)
c
6
, c
7
, c
9
u
2
(u
70
15u
69
+ ··· 200u + 16)
c
10
(u
2
u + 1)(u
70
+ 26u
69
+ ··· + 11u + 1)
c
11
(u
2
u + 1)(u
70
+ 2u
69
+ ··· u + 1)
c
12
(u
2
+ u + 1)(u
70
+ 26u
69
+ ··· + 11u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
70
21y
69
+ ··· + 32y + 1)
c
2
, c
4
((y 1)
2
)(y
70
41y
69
+ ··· 8y + 1)
c
3
, c
8
y
2
(y
70
15y
69
+ ··· 200y + 16)
c
5
, c
11
(y
2
+ y + 1)(y
70
+ 26y
69
+ ··· + 11y + 1)
c
6
, c
7
, c
9
y
2
(y
70
+ 77y
69
+ ··· + 2272y + 256)
c
10
, c
12
(y
2
+ y + 1)(y
70
+ 38y
69
+ ··· + 131y + 1)
17