10
8
(K10a
114
)
A knot diagram
1
Linearized knot diagam
7 6 8 9 10 2 1 4 5 3
Solving Sequence
4,9
5 10 6 8 3 1 2 7
c
4
c
9
c
5
c
8
c
3
c
10
c
2
c
7
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
14
+ u
13
9u
12
8u
11
+ 30u
10
+ 23u
9
45u
8
30u
7
+ 28u
6
+ 20u
5
2u
4
6u
3
2u
2
+ u 1i
* 1 irreducible components of dim
C
= 0, with total 14 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
14
+ u
13
9u
12
8u
11
+ 30u
10
+ 23u
9
45u
8
30u
7
+ 28u
6
+
20u
5
2u
4
6u
3
2u
2
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
u
u
a
3
=
u
2
+ 1
u
2
a
1
=
u
7
4u
5
+ 4u
3
2u
u
7
3u
5
+ u
a
2
=
u
8
+ 5u
6
7u
4
+ 2u
2
+ 1
u
10
+ 6u
8
11u
6
+ 6u
4
u
2
a
7
=
u
13
8u
11
+ 23u
9
30u
7
+ 20u
5
6u
3
+ u
u
13
7u
11
+ 15u
9
8u
7
4u
5
+ 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
28u
8
+ 64u
6
+ 4u
5
52u
4
16u
3
+ 12u
2
+ 12u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
14
u
13
+ ··· + u 1
c
3
, c
4
, c
5
c
8
, c
9
u
14
u
13
+ ··· u 1
c
10
u
14
5u
13
+ ··· 9u + 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
14
+ 17y
13
+ ··· + 3y + 1
c
3
, c
4
, c
5
c
8
, c
9
y
14
19y
13
+ ··· + 3y + 1
c
10
y
14
11y
13
+ ··· 873y + 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.970951 + 0.194954I
3.69538 + 2.85844I 9.69586 5.54876I
u = 0.970951 0.194954I
3.69538 2.85844I 9.69586 + 5.54876I
u = 1.084880 + 0.290974I
11.72400 4.55664I 11.05347 + 3.73465I
u = 1.084880 0.290974I
11.72400 + 4.55664I 11.05347 3.73465I
u = 0.838105
1.62716 4.88720
u = 0.339787 + 0.534810I
7.27107 + 1.74781I 6.82316 3.51408I
u = 0.339787 0.534810I
7.27107 1.74781I 6.82316 + 3.51408I
u = 0.183882 + 0.352310I
0.154017 0.948871I 3.14842 + 7.14990I
u = 0.183882 0.352310I
0.154017 + 0.948871I 3.14842 7.14990I
u = 1.69593
10.7537 6.14500
u = 1.71487 + 0.04545I
13.27980 3.79315I 10.02102 + 3.81094I
u = 1.71487 0.04545I
13.27980 + 3.79315I 10.02102 3.81094I
u = 1.74398 + 0.07530I
17.6407 + 6.0832I 11.74201 2.65432I
u = 1.74398 0.07530I
17.6407 6.0832I 11.74201 + 2.65432I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
14
u
13
+ ··· + u 1
c
3
, c
4
, c
5
c
8
, c
9
u
14
u
13
+ ··· u 1
c
10
u
14
5u
13
+ ··· 9u + 11
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
14
+ 17y
13
+ ··· + 3y + 1
c
3
, c
4
, c
5
c
8
, c
9
y
14
19y
13
+ ··· + 3y + 1
c
10
y
14
11y
13
+ ··· 873y + 121
7