12a
0130
(K12a
0130
)
A knot diagram
1
Linearized knot diagam
3 5 8 6 2 11 9 4 1 12 7 10
Solving Sequence
1,9 4,10
8 3 2 7 12 11 6 5
c
9
c
8
c
3
c
1
c
7
c
12
c
10
c
6
c
5
c
2
, c
4
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.71551 × 10
48
u
81
3.44735 × 10
49
u
80
+ ··· + 8.87210 × 10
48
b + 2.83258 × 10
48
,
2.41231 × 10
48
u
81
5.91476 × 10
49
u
80
+ ··· + 1.77442 × 10
49
a 5.95155 × 10
49
, u
82
21u
81
+ ··· 6u + 1i
I
u
2
= hb, u
2
a + a
2
au + 2u
2
+ 2a u + 3, u
3
u
2
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 88 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.72×10
48
u
81
3.45×10
49
u
80
+· · ·+8.87×10
48
b+2.83×10
48
, 2.41×10
48
u
81
5.91 × 10
49
u
80
+ · · · + 1.77 × 10
49
a 5.95 × 10
49
, u
82
21u
81
+ · · · 6u + 1i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
0.135949u
81
+ 3.33335u
80
+ ··· 14.6043u + 3.35408
0.193360u
81
+ 3.88560u
80
+ ··· 1.25258u 0.319268
a
10
=
1
u
2
a
8
=
0.279029u
81
5.76662u
80
+ ··· 2.69338u 0.263304
0.124157u
81
2.30644u
80
+ ··· + 0.756435u 0.180204
a
3
=
0.423190u
81
8.54849u
80
+ ··· 15.2890u + 3.49093
0.112206u
81
2.46762u
80
+ ··· 4.37396u + 0.0898841
a
2
=
1.77927u
81
+ 36.7421u
80
+ ··· 25.6185u + 3.03635
0.339356u
81
+ 7.17752u
80
+ ··· 1.91577u + 0.353373
a
7
=
0.154872u
81
3.46018u
80
+ ··· 3.44981u 0.0831007
0.124157u
81
2.30644u
80
+ ··· + 0.756435u 0.180204
a
12
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
0.180204u
81
+ 3.66012u
80
+ ··· 5.94908u + 0.324786
0.0929984u
81
+ 2.05540u
80
+ ··· 1.41087u + 0.279029
a
5
=
0.347186u
81
7.10288u
80
+ ··· 17.9030u + 3.60140
0.0229512u
81
0.648699u
80
+ ··· 3.43429u 0.230274
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6.00126u
81
124.839u
80
+ ··· + 77.6881u 11.3348
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
82
+ 28u
81
+ ··· + 17u + 1
c
2
, c
5
u
82
+ 4u
81
+ ··· + u + 1
c
3
, c
8
u
82
u
81
+ ··· + 224u + 64
c
6
, c
11
u
82
+ 3u
81
+ ··· 3u
2
+ 1
c
7
u
82
35u
81
+ ··· 62464u + 4096
c
9
, c
10
, c
12
u
82
+ 21u
81
+ ··· + 6u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
82
+ 56y
81
+ ··· 247y + 1
c
2
, c
5
y
82
+ 28y
81
+ ··· + 17y + 1
c
3
, c
8
y
82
35y
81
+ ··· 62464y + 4096
c
6
, c
11
y
82
21y
81
+ ··· 6y + 1
c
7
y
82
+ 13y
81
+ ··· + 200278016y + 16777216
c
9
, c
10
, c
12
y
82
+ 83y
81
+ ··· + 34y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.966335 + 0.246919I
a = 0.915807 0.552310I
b = 0.932256 0.420934I
0.0961212 0.0220843I 0
u = 0.966335 0.246919I
a = 0.915807 + 0.552310I
b = 0.932256 + 0.420934I
0.0961212 + 0.0220843I 0
u = 0.868429 + 0.444440I
a = 0.686912 + 0.981827I
b = 0.754394 + 0.707664I
5.26651 0.17540I 0
u = 0.868429 0.444440I
a = 0.686912 0.981827I
b = 0.754394 0.707664I
5.26651 + 0.17540I 0
u = 0.835016 + 0.604230I
a = 0.11512 1.66139I
b = 0.906919 0.662661I
4.79650 5.41790I 0
u = 0.835016 0.604230I
a = 0.11512 + 1.66139I
b = 0.906919 + 0.662661I
4.79650 + 5.41790I 0
u = 0.735295 + 0.603136I
a = 0.401497 + 1.324250I
b = 0.548094 + 0.869830I
1.46626 5.79986I 0
u = 0.735295 0.603136I
a = 0.401497 1.324250I
b = 0.548094 0.869830I
1.46626 + 5.79986I 0
u = 1.003680 + 0.315252I
a = 0.993929 + 0.707315I
b = 0.984089 + 0.537506I
0.98184 + 5.34647I 0
u = 1.003680 0.315252I
a = 0.993929 0.707315I
b = 0.984089 0.537506I
0.98184 5.34647I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.658324 + 0.598113I
a = 0.485356 + 1.246000I
b = 0.843150 + 0.470953I
0.30459 3.53700I 0
u = 0.658324 0.598113I
a = 0.485356 1.246000I
b = 0.843150 0.470953I
0.30459 + 3.53700I 0
u = 0.117177 + 0.876232I
a = 0.486743 0.492557I
b = 1.077990 + 0.309869I
4.85512 5.44738I 0
u = 0.117177 0.876232I
a = 0.486743 + 0.492557I
b = 1.077990 0.309869I
4.85512 + 5.44738I 0
u = 0.838027 + 0.747480I
a = 0.18699 + 1.40186I
b = 1.077520 + 0.593293I
1.35820 5.83610I 0
u = 0.838027 0.747480I
a = 0.18699 1.40186I
b = 1.077520 0.593293I
1.35820 + 5.83610I 0
u = 0.887691 + 0.734910I
a = 0.24737 1.52308I
b = 1.093880 0.659857I
0.24237 11.48170I 0
u = 0.887691 0.734910I
a = 0.24737 + 1.52308I
b = 1.093880 + 0.659857I
0.24237 + 11.48170I 0
u = 0.635956 + 0.545968I
a = 0.179327 1.211200I
b = 0.459141 0.788281I
0.506279 0.677239I 0
u = 0.635956 0.545968I
a = 0.179327 + 1.211200I
b = 0.459141 + 0.788281I
0.506279 + 0.677239I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.715873 + 0.435930I
a = 0.80244 1.80351I
b = 0.675859 0.557026I
1.97685 + 0.93597I 0
u = 0.715873 0.435930I
a = 0.80244 + 1.80351I
b = 0.675859 + 0.557026I
1.97685 0.93597I 0
u = 0.146062 + 0.758722I
a = 0.421743 + 0.799543I
b = 1.107210 0.191890I
5.29425 + 0.12843I 0
u = 0.146062 0.758722I
a = 0.421743 0.799543I
b = 1.107210 + 0.191890I
5.29425 0.12843I 0
u = 0.440280 + 1.196460I
a = 0.432093 + 0.139176I
b = 0.922439 0.078807I
4.33216 5.00431I 0
u = 0.440280 1.196460I
a = 0.432093 0.139176I
b = 0.922439 + 0.078807I
4.33216 + 5.00431I 0
u = 0.023208 + 1.284920I
a = 0.383313 + 0.281914I
b = 0.563238 + 0.690993I
1.17539 1.44130I 0
u = 0.023208 1.284920I
a = 0.383313 0.281914I
b = 0.563238 0.690993I
1.17539 + 1.44130I 0
u = 0.438517 + 1.303740I
a = 0.520590 + 0.015462I
b = 0.902982 + 0.290713I
3.99679 + 0.22630I 0
u = 0.438517 1.303740I
a = 0.520590 0.015462I
b = 0.902982 0.290713I
3.99679 0.22630I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.586540 + 0.193354I
a = 0.084170 0.399139I
b = 0.342644 0.399247I
1.308760 0.330994I 0
u = 0.586540 0.193354I
a = 0.084170 + 0.399139I
b = 0.342644 + 0.399247I
1.308760 + 0.330994I 0
u = 0.056956 + 1.397260I
a = 0.93185 1.30759I
b = 1.040060 0.573472I
2.65572 + 3.44471I 0
u = 0.056956 1.397260I
a = 0.93185 + 1.30759I
b = 1.040060 + 0.573472I
2.65572 3.44471I 0
u = 0.172171 + 1.400860I
a = 0.008660 0.390304I
b = 0.043316 0.693600I
3.77917 2.96134I 0
u = 0.172171 1.400860I
a = 0.008660 + 0.390304I
b = 0.043316 + 0.693600I
3.77917 + 2.96134I 0
u = 0.04901 + 1.42040I
a = 1.38947 0.82694I
b = 0.953515 0.285513I
4.58909 3.68918I 0
u = 0.04901 1.42040I
a = 1.38947 + 0.82694I
b = 0.953515 + 0.285513I
4.58909 + 3.68918I 0
u = 0.02690 + 1.43465I
a = 0.410227 + 0.611814I
b = 0.456620 + 1.092150I
5.98206 + 3.30923I 0
u = 0.02690 1.43465I
a = 0.410227 0.611814I
b = 0.456620 1.092150I
5.98206 3.30923I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.12979 + 1.43945I
a = 0.57070 1.35363I
b = 1.216760 0.697773I
8.43626 + 9.73494I 0
u = 0.12979 1.43945I
a = 0.57070 + 1.35363I
b = 1.216760 + 0.697773I
8.43626 9.73494I 0
u = 0.01079 + 1.45064I
a = 0.316445 0.626909I
b = 0.342032 1.084310I
6.69030 2.27941I 0
u = 0.01079 1.45064I
a = 0.316445 + 0.626909I
b = 0.342032 + 1.084310I
6.69030 + 2.27941I 0
u = 0.00942 + 1.45315I
a = 0.952194 + 0.918789I
b = 1.116400 + 0.390200I
7.12609 + 0.70813I 0
u = 0.00942 1.45315I
a = 0.952194 0.918789I
b = 1.116400 0.390200I
7.12609 0.70813I 0
u = 0.10934 + 1.45497I
a = 0.587644 + 1.249560I
b = 1.233530 + 0.633587I
9.57155 + 3.83374I 0
u = 0.10934 1.45497I
a = 0.587644 1.249560I
b = 1.233530 0.633587I
9.57155 3.83374I 0
u = 0.31412 + 1.45604I
a = 0.388311 + 0.407195I
b = 0.586739 + 0.740171I
0.74863 4.43752I 0
u = 0.31412 1.45604I
a = 0.388311 0.407195I
b = 0.586739 0.740171I
0.74863 + 4.43752I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.444777 + 0.241252I
a = 1.29181 2.55165I
b = 1.116200 0.565155I
2.90706 + 7.74412I 3.19240 6.08323I
u = 0.444777 0.241252I
a = 1.29181 + 2.55165I
b = 1.116200 + 0.565155I
2.90706 7.74412I 3.19240 + 6.08323I
u = 0.403547 + 0.284113I
a = 1.11899 + 2.48613I
b = 1.108970 + 0.473452I
3.82381 + 2.08409I 5.12534 0.96293I
u = 0.403547 0.284113I
a = 1.11899 2.48613I
b = 1.108970 0.473452I
3.82381 2.08409I 5.12534 + 0.96293I
u = 0.22823 + 1.50166I
a = 1.25764 0.90746I
b = 0.956045 0.354047I
4.34801 2.40982I 0
u = 0.22823 1.50166I
a = 1.25764 + 0.90746I
b = 0.956045 + 0.354047I
4.34801 + 2.40982I 0
u = 0.22821 + 1.54217I
a = 0.259834 0.677815I
b = 0.395064 1.080160I
6.40684 3.91879I 0
u = 0.22821 1.54217I
a = 0.259834 + 0.677815I
b = 0.395064 + 1.080160I
6.40684 + 3.91879I 0
u = 0.23827 + 1.55598I
a = 0.854337 + 0.910276I
b = 1.111540 + 0.439099I
6.80534 6.93103I 0
u = 0.23827 1.55598I
a = 0.854337 0.910276I
b = 1.111540 0.439099I
6.80534 + 6.93103I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.25959 + 1.55619I
a = 0.346137 + 0.684211I
b = 0.502939 + 1.091370I
5.60875 9.51344I 0
u = 0.25959 1.55619I
a = 0.346137 0.684211I
b = 0.502939 1.091370I
5.60875 + 9.51344I 0
u = 0.29684 + 1.55310I
a = 0.78073 1.26132I
b = 1.047760 0.610616I
2.18928 9.60793I 0
u = 0.29684 1.55310I
a = 0.78073 + 1.26132I
b = 1.047760 + 0.610616I
2.18928 + 9.60793I 0
u = 0.06659 + 1.58893I
a = 0.517511 + 0.119760I
b = 1.393120 + 0.025476I
13.42750 0.18395I 0
u = 0.06659 1.58893I
a = 0.517511 0.119760I
b = 1.393120 0.025476I
13.42750 + 0.18395I 0
u = 0.316207 + 0.256940I
a = 2.75499 0.01098I
b = 0.603808 + 0.128465I
0.71341 2.60028I 1.59907 + 9.28858I
u = 0.316207 0.256940I
a = 2.75499 + 0.01098I
b = 0.603808 0.128465I
0.71341 + 2.60028I 1.59907 9.28858I
u = 0.09605 + 1.60007I
a = 0.509209 + 0.059139I
b = 1.392400 + 0.070113I
13.3912 6.2552I 0
u = 0.09605 1.60007I
a = 0.509209 0.059139I
b = 1.392400 0.070113I
13.3912 + 6.2552I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.29645 + 1.61228I
a = 0.480060 + 1.172130I
b = 1.220590 + 0.664279I
9.06027 10.15210I 0
u = 0.29645 1.61228I
a = 0.480060 1.172130I
b = 1.220590 0.664279I
9.06027 + 10.15210I 0
u = 0.31671 + 1.61338I
a = 0.452534 1.266320I
b = 1.204560 0.723604I
7.8725 16.0422I 0
u = 0.31671 1.61338I
a = 0.452534 + 1.266320I
b = 1.204560 + 0.723604I
7.8725 + 16.0422I 0
u = 0.308601 + 0.101944I
a = 1.34635 3.22772I
b = 0.811719 0.580510I
2.19827 + 2.31052I 2.41183 3.57340I
u = 0.308601 0.101944I
a = 1.34635 + 3.22772I
b = 0.811719 + 0.580510I
2.19827 2.31052I 2.41183 + 3.57340I
u = 0.104373 + 0.295289I
a = 0.47896 + 2.73242I
b = 0.825317 + 0.181714I
1.35824 + 0.44076I 6.52747 0.76489I
u = 0.104373 0.295289I
a = 0.47896 2.73242I
b = 0.825317 0.181714I
1.35824 0.44076I 6.52747 + 0.76489I
u = 0.010297 + 0.291539I
a = 2.15155 1.29958I
b = 0.099129 0.761027I
0.95053 2.17721I 1.51932 + 4.74837I
u = 0.010297 0.291539I
a = 2.15155 + 1.29958I
b = 0.099129 + 0.761027I
0.95053 + 2.17721I 1.51932 4.74837I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.155166 + 0.198549I
a = 2.63934 + 2.32241I
b = 0.310013 + 0.766636I
0.58271 + 2.77775I 0.95085 1.97842I
u = 0.155166 0.198549I
a = 2.63934 2.32241I
b = 0.310013 0.766636I
0.58271 2.77775I 0.95085 + 1.97842I
13
II. I
u
2
= hb, u
2
a + a
2
au + 2u
2
+ 2a u + 3, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
1
=
0
u
a
9
=
1
0
a
4
=
a
0
a
10
=
1
u
2
a
8
=
1
0
a
3
=
a
0
a
2
=
u
2
+ a u + 2
u
a
7
=
1
0
a
12
=
u
u
2
u + 1
a
11
=
u
2
+ 1
u
2
u + 1
a
6
=
0
u
a
5
=
a
u
2
a
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3au 2u
2
+ a + 3u 7
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
(u
2
u + 1)
3
c
2
(u
2
+ u + 1)
3
c
3
, c
7
, c
8
u
6
c
6
(u
3
+ u
2
1)
2
c
9
, c
10
(u
3
u
2
+ 2u 1)
2
c
11
(u
3
u
2
+ 1)
2
c
12
(u
3
+ u
2
+ 2u + 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
7
, c
8
y
6
c
6
, c
11
(y
3
y
2
+ 2y 1)
2
c
9
, c
10
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.706350 + 0.266290I
b = 0
3.02413 4.85801I 2.23639 + 5.66123I
u = 0.215080 + 1.307140I
a = 0.583789 + 0.478572I
b = 0
3.02413 0.79824I 0.946254 + 0.677361I
u = 0.215080 1.307140I
a = 0.706350 0.266290I
b = 0
3.02413 + 4.85801I 2.23639 5.66123I
u = 0.215080 1.307140I
a = 0.583789 0.478572I
b = 0
3.02413 + 0.79824I 0.946254 0.677361I
u = 0.569840
a = 0.87744 + 1.51977I
b = 0
1.11345 + 2.02988I 5.31735 1.07831I
u = 0.569840
a = 0.87744 1.51977I
b = 0
1.11345 2.02988I 5.31735 + 1.07831I
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
((u
2
u + 1)
3
)(u
82
+ 28u
81
+ ··· + 17u + 1)
c
2
((u
2
+ u + 1)
3
)(u
82
+ 4u
81
+ ··· + u + 1)
c
3
, c
8
u
6
(u
82
u
81
+ ··· + 224u + 64)
c
5
((u
2
u + 1)
3
)(u
82
+ 4u
81
+ ··· + u + 1)
c
6
((u
3
+ u
2
1)
2
)(u
82
+ 3u
81
+ ··· 3u
2
+ 1)
c
7
u
6
(u
82
35u
81
+ ··· 62464u + 4096)
c
9
, c
10
((u
3
u
2
+ 2u 1)
2
)(u
82
+ 21u
81
+ ··· + 6u + 1)
c
11
((u
3
u
2
+ 1)
2
)(u
82
+ 3u
81
+ ··· 3u
2
+ 1)
c
12
((u
3
+ u
2
+ 2u + 1)
2
)(u
82
+ 21u
81
+ ··· + 6u + 1)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
82
+ 56y
81
+ ··· 247y + 1)
c
2
, c
5
((y
2
+ y + 1)
3
)(y
82
+ 28y
81
+ ··· + 17y + 1)
c
3
, c
8
y
6
(y
82
35y
81
+ ··· 62464y + 4096)
c
6
, c
11
((y
3
y
2
+ 2y 1)
2
)(y
82
21y
81
+ ··· 6y + 1)
c
7
y
6
(y
82
+ 13y
81
+ ··· + 2.00278 × 10
8
y + 1.67772 × 10
7
)
c
9
, c
10
, c
12
((y
3
+ 3y
2
+ 2y 1)
2
)(y
82
+ 83y
81
+ ··· + 34y + 1)
19