12a
0134
(K12a
0134
)
A knot diagram
1
Linearized knot diagam
3 5 8 7 2 10 1 11 12 6 9 4
Solving Sequence
6,10
7
2,11
5 3 1 8 4 12 9
c
6
c
10
c
5
c
2
c
1
c
7
c
4
c
12
c
9
c
3
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.86227 × 10
495
u
118
4.68618 × 10
495
u
117
+ ··· + 1.43467 × 10
497
b 3.00236 × 10
498
,
4.78619 × 10
497
u
118
1.23447 × 10
498
u
117
+ ··· + 4.47045 × 10
499
a 1.58926 × 10
501
,
u
119
+ u
118
+ ··· + 4096u + 512i
I
v
1
= ha, 59103v
8
362866v
7
+ ··· + 178147b + 551223, v
9
5v
8
+ 10v
7
v
5
37v
4
+ 7v
3
12v
2
+ v 1i
* 2 irreducible components of dim
C
= 0, with total 128 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.86 × 10
495
u
118
4.69 × 10
495
u
117
+ · · · + 1.43 × 10
497
b 3.00 ×
10
498
, 4.79 × 10
497
u
118
1.23 × 10
498
u
117
+ · · · + 4.47 × 10
499
a 1.59 ×
10
501
, u
119
+ u
118
+ · · · + 4096u + 512i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
2
=
0.0107063u
118
+ 0.0276140u
117
+ ··· + 265.664u + 35.5505
0.0129804u
118
+ 0.0326637u
117
+ ··· + 174.370u + 20.9271
a
11
=
u
u
a
5
=
0.0499003u
118
0.0301250u
117
+ ··· + 96.3323u + 17.6475
0.0248375u
118
0.0192909u
117
+ ··· + 27.4367u + 5.81828
a
3
=
0.0668403u
118
0.0545125u
117
+ ··· 0.779841u + 6.91602
0.0284835u
118
0.0271884u
117
+ ··· 88.5312u 7.25798
a
1
=
0.0132150u
118
0.0126096u
117
+ ··· 186.921u 26.5168
0.0237768u
118
0.0244099u
117
+ ··· 41.8929u 2.43633
a
8
=
0.00385505u
118
0.00206836u
117
+ ··· 60.8198u 8.57415
0.0354571u
118
+ 0.00289238u
117
+ ··· 230.820u 34.3222
a
4
=
0.0508154u
118
0.0358733u
117
+ ··· + 68.3183u + 13.3408
0.0261492u
118
0.0238212u
117
+ ··· + 7.17127u + 3.34367
a
12
=
0.0316021u
118
0.00496074u
117
+ ··· + 170.000u + 25.7481
0.0478118u
118
0.00189380u
117
+ ··· + 323.763u + 47.9626
a
9
=
0.0162097u
118
0.00306695u
117
+ ··· 153.762u 22.2145
0.0478118u
118
+ 0.00189380u
117
+ ··· 323.763u 47.9626
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.155199u
118
+ 0.132157u
117
+ ··· + 22.3469u 16.4864
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
119
+ 48u
118
+ ··· 10u 1
c
2
, c
5
u
119
+ 2u
118
+ ··· 10u 1
c
3
u
119
2u
118
+ ··· + 8762u 1327
c
4
u
119
6u
118
+ ··· 3844u 1441
c
6
, c
10
u
119
u
118
+ ··· + 4096u 512
c
7
u
119
+ 10u
118
+ ··· 2u 1
c
8
, c
9
, c
11
u
119
10u
118
+ ··· + 14u 1
c
12
u
119
+ 12u
118
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
119
+ 48y
118
+ ··· 1922y 1
c
2
, c
5
y
119
+ 48y
118
+ ··· 10y 1
c
3
y
119
132y
118
+ ··· + 73112778y 1760929
c
4
y
119
108y
118
+ ··· 880963674y 2076481
c
6
, c
10
y
119
+ 57y
118
+ ··· 1572864y 262144
c
7
y
119
12y
118
+ ··· + 10y 1
c
8
, c
9
, c
11
y
119
108y
118
+ ··· 162y 1
c
12
y
119
+ 100y
117
+ ··· 10y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.526423 + 0.832737I
a = 0.379040 + 0.949735I
b = 0.955538 + 0.601021I
2.70873 + 3.86349I 0
u = 0.526423 0.832737I
a = 0.379040 0.949735I
b = 0.955538 0.601021I
2.70873 3.86349I 0
u = 0.921604 + 0.339981I
a = 0.599719 + 0.536043I
b = 0.675300 + 1.052770I
2.91318 8.94395I 0
u = 0.921604 0.339981I
a = 0.599719 0.536043I
b = 0.675300 1.052770I
2.91318 + 8.94395I 0
u = 0.497653 + 0.822885I
a = 0.555826 + 0.047006I
b = 0.115814 0.219568I
0.04303 1.98692I 0
u = 0.497653 0.822885I
a = 0.555826 0.047006I
b = 0.115814 + 0.219568I
0.04303 + 1.98692I 0
u = 0.848144 + 0.441248I
a = 0.653233 0.314441I
b = 0.822990 0.578925I
4.34687 3.34050I 0
u = 0.848144 0.441248I
a = 0.653233 + 0.314441I
b = 0.822990 + 0.578925I
4.34687 + 3.34050I 0
u = 0.395311 + 0.868690I
a = 4.40337 2.54920I
b = 0.525263 0.898450I
0.25612 3.85842I 0
u = 0.395311 0.868690I
a = 4.40337 + 2.54920I
b = 0.525263 + 0.898450I
0.25612 + 3.85842I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.000340 + 0.308388I
a = 0.686162 + 0.562362I
b = 0.625987 + 0.939108I
2.82823 5.08911I 0
u = 1.000340 0.308388I
a = 0.686162 0.562362I
b = 0.625987 0.939108I
2.82823 + 5.08911I 0
u = 0.486144 + 0.934868I
a = 1.21381 + 2.09573I
b = 0.687854 + 1.176020I
0.50738 + 6.41058I 0
u = 0.486144 0.934868I
a = 1.21381 2.09573I
b = 0.687854 1.176020I
0.50738 6.41058I 0
u = 0.100723 + 1.062340I
a = 0.08824 2.61983I
b = 0.072083 1.177180I
5.55472 1.58319I 0
u = 0.100723 1.062340I
a = 0.08824 + 2.61983I
b = 0.072083 + 1.177180I
5.55472 + 1.58319I 0
u = 0.868718 + 0.318232I
a = 0.208382 0.342220I
b = 0.625738 + 1.148730I
2.17047 + 4.66203I 0
u = 0.868718 0.318232I
a = 0.208382 + 0.342220I
b = 0.625738 1.148730I
2.17047 4.66203I 0
u = 0.002867 + 0.924913I
a = 0.529675 0.759000I
b = 0.224374 0.203815I
1.31680 1.56421I 0
u = 0.002867 0.924913I
a = 0.529675 + 0.759000I
b = 0.224374 + 0.203815I
1.31680 + 1.56421I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.535297 + 0.750461I
a = 0.483410 + 0.719185I
b = 0.939624 0.355644I
2.95353 + 0.44405I 0
u = 0.535297 0.750461I
a = 0.483410 0.719185I
b = 0.939624 + 0.355644I
2.95353 0.44405I 0
u = 0.843634 + 0.305336I
a = 1.053140 + 0.212736I
b = 0.146729 0.103716I
2.62882 0.46286I 0
u = 0.843634 0.305336I
a = 1.053140 0.212736I
b = 0.146729 + 0.103716I
2.62882 + 0.46286I 0
u = 0.417757 + 0.773293I
a = 0.71113 2.74755I
b = 0.520079 + 0.812541I
0.027445 + 0.372128I 0
u = 0.417757 0.773293I
a = 0.71113 + 2.74755I
b = 0.520079 0.812541I
0.027445 0.372128I 0
u = 0.859101 + 0.154610I
a = 0.637106 0.427319I
b = 0.664918 0.727137I
3.48096 0.06555I 0
u = 0.859101 0.154610I
a = 0.637106 + 0.427319I
b = 0.664918 + 0.727137I
3.48096 + 0.06555I 0
u = 0.209029 + 0.820458I
a = 1.24444 + 4.72940I
b = 0.431964 + 0.872764I
0.797814 + 0.550209I 12.54758 + 0.I
u = 0.209029 0.820458I
a = 1.24444 4.72940I
b = 0.431964 0.872764I
0.797814 0.550209I 12.54758 + 0.I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.118120 + 0.282841I
a = 0.571251 + 0.676237I
b = 0.036836 + 1.239910I
6.98001 + 4.13299I 0
u = 1.118120 0.282841I
a = 0.571251 0.676237I
b = 0.036836 1.239910I
6.98001 4.13299I 0
u = 0.398186 + 1.085280I
a = 0.040349 + 0.323432I
b = 0.921149 + 1.021620I
3.27191 0.12438I 0
u = 0.398186 1.085280I
a = 0.040349 0.323432I
b = 0.921149 1.021620I
3.27191 + 0.12438I 0
u = 0.411359 + 1.083630I
a = 0.693040 + 0.000352I
b = 0.819404 0.474535I
0.08564 3.67293I 0
u = 0.411359 1.083630I
a = 0.693040 0.000352I
b = 0.819404 + 0.474535I
0.08564 + 3.67293I 0
u = 0.819575 + 0.109814I
a = 3.51686 2.94234I
b = 0.487246 0.894874I
2.55503 2.22852I 26.2651 22.7094I
u = 0.819575 0.109814I
a = 3.51686 + 2.94234I
b = 0.487246 + 0.894874I
2.55503 + 2.22852I 26.2651 + 22.7094I
u = 0.443863 + 1.094740I
a = 0.70279 + 2.05830I
b = 0.010995 + 1.274440I
4.33720 + 6.36777I 0
u = 0.443863 1.094740I
a = 0.70279 2.05830I
b = 0.010995 1.274440I
4.33720 6.36777I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.478462 + 1.080620I
a = 0.235074 0.378978I
b = 1.109330 + 0.253117I
1.80179 3.47511I 0
u = 0.478462 1.080620I
a = 0.235074 + 0.378978I
b = 1.109330 0.253117I
1.80179 + 3.47511I 0
u = 0.278092 + 1.159260I
a = 0.28192 + 1.45729I
b = 0.411679 + 1.308160I
6.92350 + 1.57130I 0
u = 0.278092 1.159260I
a = 0.28192 1.45729I
b = 0.411679 1.308160I
6.92350 1.57130I 0
u = 0.482491 + 0.622840I
a = 0.207877 0.091383I
b = 0.755776 1.020320I
1.44329 2.36124I 8.29903 + 4.18833I
u = 0.482491 0.622840I
a = 0.207877 + 0.091383I
b = 0.755776 + 1.020320I
1.44329 + 2.36124I 8.29903 4.18833I
u = 0.667291 + 0.411587I
a = 0.43420 2.04602I
b = 0.820942 + 0.613116I
0.08315 + 2.49375I 7.75933 3.67875I
u = 0.667291 0.411587I
a = 0.43420 + 2.04602I
b = 0.820942 0.613116I
0.08315 2.49375I 7.75933 + 3.67875I
u = 0.490044 + 1.116310I
a = 0.282231 0.161432I
b = 0.420670 + 0.336969I
4.94221 + 5.12424I 0
u = 0.490044 1.116310I
a = 0.282231 + 0.161432I
b = 0.420670 0.336969I
4.94221 5.12424I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.451345 + 1.135050I
a = 0.611010 + 1.164460I
b = 0.590546 0.752125I
5.11734 + 2.47956I 0
u = 0.451345 1.135050I
a = 0.611010 1.164460I
b = 0.590546 + 0.752125I
5.11734 2.47956I 0
u = 0.529740 + 1.114830I
a = 0.360715 0.684753I
b = 1.073270 0.683609I
2.26487 7.17835I 0
u = 0.529740 1.114830I
a = 0.360715 + 0.684753I
b = 1.073270 + 0.683609I
2.26487 + 7.17835I 0
u = 1.141570 + 0.512721I
a = 0.672303 + 0.260569I
b = 0.874943 + 0.463475I
0.86473 + 6.53924I 0
u = 1.141570 0.512721I
a = 0.672303 0.260569I
b = 0.874943 0.463475I
0.86473 6.53924I 0
u = 0.399609 + 1.211290I
a = 0.74296 + 2.11227I
b = 0.641203 + 1.096930I
1.77422 9.13916I 0
u = 0.399609 1.211290I
a = 0.74296 2.11227I
b = 0.641203 1.096930I
1.77422 + 9.13916I 0
u = 0.370969 + 1.226650I
a = 0.06002 2.55757I
b = 0.377258 0.977217I
6.68223 + 1.86961I 0
u = 0.370969 1.226650I
a = 0.06002 + 2.55757I
b = 0.377258 + 0.977217I
6.68223 1.86961I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.527861 + 0.486187I
a = 0.73012 1.84153I
b = 0.751631 0.403800I
0.107706 0.619941I 7.54549 + 5.15553I
u = 0.527861 0.486187I
a = 0.73012 + 1.84153I
b = 0.751631 + 0.403800I
0.107706 + 0.619941I 7.54549 5.15553I
u = 0.615601 + 1.128990I
a = 0.438959 0.352835I
b = 0.913238 + 0.486014I
2.23345 + 8.79850I 0
u = 0.615601 1.128990I
a = 0.438959 + 0.352835I
b = 0.913238 0.486014I
2.23345 8.79850I 0
u = 0.791421 + 1.015070I
a = 0.179165 0.165126I
b = 0.475409 0.698950I
0.52690 1.71924I 0
u = 0.791421 1.015070I
a = 0.179165 + 0.165126I
b = 0.475409 + 0.698950I
0.52690 + 1.71924I 0
u = 0.106708 + 0.698575I
a = 0.580676 + 0.345557I
b = 0.860873 + 0.753065I
2.16952 + 1.09292I 4.44336 + 1.96603I
u = 0.106708 0.698575I
a = 0.580676 0.345557I
b = 0.860873 0.753065I
2.16952 1.09292I 4.44336 1.96603I
u = 0.509300 + 1.191870I
a = 2.52134 + 1.68303I
b = 0.558185 + 0.942794I
5.71911 + 7.03575I 0
u = 0.509300 1.191870I
a = 2.52134 1.68303I
b = 0.558185 0.942794I
5.71911 7.03575I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.570922 + 1.178260I
a = 0.94259 1.56885I
b = 0.71585 1.26082I
4.83003 9.97536I 0
u = 0.570922 1.178260I
a = 0.94259 + 1.56885I
b = 0.71585 + 1.26082I
4.83003 + 9.97536I 0
u = 0.816192 + 1.046570I
a = 1.24732 1.06920I
b = 0.388853 0.871583I
3.34529 + 0.06544I 0
u = 0.816192 1.046570I
a = 1.24732 + 1.06920I
b = 0.388853 + 0.871583I
3.34529 0.06544I 0
u = 0.641810 + 0.188094I
a = 1.11657 4.91853I
b = 0.455731 + 0.841145I
2.33120 + 1.65341I 8.7372 21.0423I
u = 0.641810 0.188094I
a = 1.11657 + 4.91853I
b = 0.455731 0.841145I
2.33120 1.65341I 8.7372 + 21.0423I
u = 1.239000 + 0.520126I
a = 0.560973 0.551572I
b = 0.655391 1.118060I
2.84169 + 12.19540I 0
u = 1.239000 0.520126I
a = 0.560973 + 0.551572I
b = 0.655391 + 1.118060I
2.84169 12.19540I 0
u = 0.029731 + 0.651792I
a = 0.630389 0.468626I
b = 0.767043 0.982314I
1.45890 + 7.13045I 7.35209 6.24138I
u = 0.029731 0.651792I
a = 0.630389 + 0.468626I
b = 0.767043 + 0.982314I
1.45890 7.13045I 7.35209 + 6.24138I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.623092 + 1.199390I
a = 1.13835 1.85356I
b = 0.676126 1.125040I
0.2822 + 14.6365I 0
u = 0.623092 1.199390I
a = 1.13835 + 1.85356I
b = 0.676126 + 1.125040I
0.2822 14.6365I 0
u = 0.189768 + 1.349420I
a = 0.114224 1.390760I
b = 0.371239 0.809422I
1.69763 1.29769I 0
u = 0.189768 1.349420I
a = 0.114224 + 1.390760I
b = 0.371239 + 0.809422I
1.69763 + 1.29769I 0
u = 0.743280 + 1.160850I
a = 0.158837 0.118246I
b = 0.637380 + 0.541821I
4.38510 + 6.20836I 0
u = 0.743280 1.160850I
a = 0.158837 + 0.118246I
b = 0.637380 0.541821I
4.38510 6.20836I 0
u = 0.000177 + 0.620334I
a = 2.56162 3.35001I
b = 0.484996 1.009400I
1.25021 2.82984I 1.97233 + 3.51172I
u = 0.000177 0.620334I
a = 2.56162 + 3.35001I
b = 0.484996 + 1.009400I
1.25021 + 2.82984I 1.97233 3.51172I
u = 0.066386 + 1.397900I
a = 0.003743 + 0.255910I
b = 0.764971 + 0.159760I
8.87900 + 3.08041I 0
u = 0.066386 1.397900I
a = 0.003743 0.255910I
b = 0.764971 0.159760I
8.87900 3.08041I 0
13
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.156339 + 0.564741I
a = 0.36877 5.91174I
b = 0.577530 1.010180I
1.23906 2.78377I 4.72487 + 7.33170I
u = 0.156339 0.564741I
a = 0.36877 + 5.91174I
b = 0.577530 + 1.010180I
1.23906 + 2.78377I 4.72487 7.33170I
u = 0.62276 + 1.27617I
a = 0.59014 1.59494I
b = 0.011139 1.362930I
10.1820 10.3208I 0
u = 0.62276 1.27617I
a = 0.59014 + 1.59494I
b = 0.011139 + 1.362930I
10.1820 + 10.3208I 0
u = 0.523055 + 0.235557I
a = 0.885052 0.681673I
b = 0.106383 1.076490I
1.94863 2.48320I 1.59791 + 4.26965I
u = 0.523055 0.235557I
a = 0.885052 + 0.681673I
b = 0.106383 + 1.076490I
1.94863 + 2.48320I 1.59791 4.26965I
u = 0.73996 + 1.23324I
a = 0.209991 + 0.379317I
b = 0.974965 0.473478I
3.21741 13.29190I 0
u = 0.73996 1.23324I
a = 0.209991 0.379317I
b = 0.974965 + 0.473478I
3.21741 + 13.29190I 0
u = 0.17158 + 1.44108I
a = 0.53087 + 1.73249I
b = 0.252256 + 1.226900I
13.32730 0.47174I 0
u = 0.17158 1.44108I
a = 0.53087 1.73249I
b = 0.252256 1.226900I
13.32730 + 0.47174I 0
14
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24359 + 1.43179I
a = 0.088732 + 1.356570I
b = 0.499786 + 0.954982I
2.46876 5.01134I 0
u = 0.24359 1.43179I
a = 0.088732 1.356570I
b = 0.499786 0.954982I
2.46876 + 5.01134I 0
u = 0.74049 + 1.27461I
a = 0.99727 + 1.35913I
b = 0.542998 + 0.951080I
0.29654 5.98543I 0
u = 0.74049 1.27461I
a = 0.99727 1.35913I
b = 0.542998 0.951080I
0.29654 + 5.98543I 0
u = 1.25979 + 0.78001I
a = 0.442889 + 0.486633I
b = 0.469383 + 0.939560I
3.81372 3.40916I 0
u = 1.25979 0.78001I
a = 0.442889 0.486633I
b = 0.469383 0.939560I
3.81372 + 3.40916I 0
u = 0.77623 + 1.27272I
a = 1.17761 + 1.56095I
b = 0.691757 + 1.154010I
5.3195 19.3518I 0
u = 0.77623 1.27272I
a = 1.17761 1.56095I
b = 0.691757 1.154010I
5.3195 + 19.3518I 0
u = 0.56449 + 1.38347I
a = 0.03792 + 1.41496I
b = 0.152059 + 0.944612I
8.51063 + 5.18393I 0
u = 0.56449 1.38347I
a = 0.03792 1.41496I
b = 0.152059 0.944612I
8.51063 5.18393I 0
15
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.83498 + 1.26806I
a = 1.09365 1.28429I
b = 0.593241 1.022410I
5.78573 + 11.06080I 0
u = 0.83498 1.26806I
a = 1.09365 + 1.28429I
b = 0.593241 + 1.022410I
5.78573 11.06080I 0
u = 1.50160 + 0.22594I
a = 0.668456 0.685367I
b = 0.432267 0.911549I
4.11769 + 1.69954I 0
u = 1.50160 0.22594I
a = 0.668456 + 0.685367I
b = 0.432267 + 0.911549I
4.11769 1.69954I 0
u = 0.11055 + 1.58796I
a = 0.27661 1.56306I
b = 0.519882 1.115850I
11.57620 + 7.68806I 0
u = 0.11055 1.58796I
a = 0.27661 + 1.56306I
b = 0.519882 + 1.115850I
11.57620 7.68806I 0
u = 0.343485
a = 1.32364
b = 0.398463
1.04484 10.3180
u = 0.230175 + 0.140143I
a = 1.65142 0.72088I
b = 0.602478 0.853926I
0.59145 2.37148I 1.54709 + 3.28473I
u = 0.230175 0.140143I
a = 1.65142 + 0.72088I
b = 0.602478 + 0.853926I
0.59145 + 2.37148I 1.54709 3.28473I
16
II.
I
v
1
= ha, 59103v
8
362866v
7
+ · · · + 178147b + 551223, v
9
5v
8
+ · · · + v 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
v
0
a
7
=
1
0
a
2
=
0
0.331765v
8
+ 2.03689v
7
+ ··· + 3.64641v 3.09420
a
11
=
v
0
a
5
=
1
0.727601v
8
4.15347v
7
+ ··· 6.59548v + 3.24127
a
3
=
0.331765v
8
+ 2.03689v
7
+ ··· + 3.64641v 3.09420
1.07440v
8
+ 6.00362v
7
+ ··· + 8.53879v 3.73749
a
1
=
0.742640v
8
+ 3.96673v
7
+ ··· + 4.89238v 0.643283
0.310968v
8
1.59303v
7
+ ··· 4.61878v + 1.66588
a
8
=
1.20067v
8
5.89924v
7
+ ··· 2.68791v 0.492840
v
8
+ 5v
7
10v
6
+ v
4
+ 37v
3
7v
2
+ 12v 1
a
4
=
0.727601v
8
4.15347v
7
+ ··· 6.59548v + 4.24127
0.727601v
8
4.15347v
7
+ ··· 6.59548v + 3.24127
a
12
=
1.20067v
8
+ 5.89924v
7
+ ··· + 2.68791v + 0.492840
v
8
5v
7
+ 10v
6
v
4
37v
3
+ 7v
2
12v + 1
a
9
=
1.20067v
8
5.89924v
7
+ ··· 1.68791v 0.492840
v
8
+ 5v
7
10v
6
+ v
4
+ 37v
3
7v
2
+ 12v 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
279551
178147
v
8
+
1437368
178147
v
7
2978743
178147
v
6
+
272298
178147
v
5
+
682691
178147
v
4
+
9851898
178147
v
3
3817557
178147
v
2
+
3775595
178147
v +
969331
178147
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
2
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
3
, c
12
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
5
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
6
, c
10
u
9
c
7
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
8
, c
9
(u 1)
9
c
11
(u + 1)
9
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
2
, c
5
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
3
, c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
6
, c
10
y
9
c
7
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
8
, c
9
, c
11
(y 1)
9
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.939568 + 0.981640I
a = 0
b = 0.140343 0.966856I
3.42837 2.09337I 4.41045 + 5.46639I
v = 0.939568 0.981640I
a = 0
b = 0.140343 + 0.966856I
3.42837 + 2.09337I 4.41045 5.46639I
v = 0.119081 + 0.409451I
a = 0
b = 0.796005 0.733148I
2.72642 1.33617I 8.07941 + 3.55369I
v = 0.119081 0.409451I
a = 0
b = 0.796005 + 0.733148I
2.72642 + 1.33617I 8.07941 3.55369I
v = 0.016164 + 0.378317I
a = 0
b = 0.728966 + 0.986295I
1.95319 7.08493I 8.66846 + 5.33071I
v = 0.016164 0.378317I
a = 0
b = 0.728966 0.986295I
1.95319 + 7.08493I 8.66846 5.33071I
v = 2.14893
a = 0
b = 0.512358
0.446489 0.182090
v = 2.26219 + 2.13290I
a = 0
b = 0.628449 0.875112I
1.02799 2.45442I 2.24638 6.63381I
v = 2.26219 2.13290I
a = 0
b = 0.628449 + 0.875112I
1.02799 + 2.45442I 2.24638 + 6.63381I
20
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
119
+ 48u
118
+ ··· 10u 1)
c
2
(u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1)
· (u
119
+ 2u
118
+ ··· 10u 1)
c
3
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
119
2u
118
+ ··· + 8762u 1327)
c
4
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
119
6u
118
+ ··· 3844u 1441)
c
5
(u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1)
· (u
119
+ 2u
118
+ ··· 10u 1)
c
6
, c
10
u
9
(u
119
u
118
+ ··· + 4096u 512)
c
7
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
119
+ 10u
118
+ ··· 2u 1)
c
8
, c
9
((u 1)
9
)(u
119
10u
118
+ ··· + 14u 1)
c
11
((u + 1)
9
)(u
119
10u
118
+ ··· + 14u 1)
c
12
(u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1)
· (u
119
+ 12u
118
+ ··· 2u 1)
21
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
119
+ 48y
118
+ ··· 1922y 1)
c
2
, c
5
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
119
+ 48y
118
+ ··· 10y 1)
c
3
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
119
132y
118
+ ··· + 73112778y 1760929)
c
4
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
119
108y
118
+ ··· 880963674y 2076481)
c
6
, c
10
y
9
(y
119
+ 57y
118
+ ··· 1572864y 262144)
c
7
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
119
12y
118
+ ··· + 10y 1)
c
8
, c
9
, c
11
((y 1)
9
)(y
119
108y
118
+ ··· 162y 1)
c
12
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
119
+ 100y
117
+ ··· 10y 1)
22