12a
0144
(K12a
0144
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 10 11 12 4 1 6 8 7
Solving Sequence
5,10
6 11
3,7
2 1 4 9 8 12
c
5
c
10
c
6
c
2
c
1
c
4
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.00279 × 10
169
u
80
+ 6.54285 × 10
169
u
79
+ ··· + 5.58362 × 10
170
b 5.37338 × 10
170
,
2.70498 × 10
170
u
80
+ 4.42960 × 10
170
u
79
+ ··· + 1.67509 × 10
171
a + 1.36068 × 10
171
, u
81
+ 2u
80
+ ··· 27u 9i
I
u
2
= hb + 1, a + 1, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 87 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.00 × 10
169
u
80
+ 6.54 × 10
169
u
79
+ · · · + 5.58 × 10
170
b 5.37 ×
10
170
, 2.70 × 10
170
u
80
+ 4.43 × 10
170
u
79
+ · · · + 1.68 × 10
171
a + 1.36 ×
10
171
, u
81
+ 2u
80
+ · · · 27u 9i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
0.161483u
80
0.264440u
79
+ ··· 4.05452u 0.812307
0.0179595u
80
0.117179u
79
+ ··· 1.66032u + 0.962347
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
0.143524u
80
0.381620u
79
+ ··· 5.71484u + 0.150039
0.0179595u
80
0.117179u
79
+ ··· 1.66032u + 0.962347
a
1
=
0.428496u
80
0.583915u
79
+ ··· + 12.7602u + 6.52385
0.131228u
80
0.0542263u
79
+ ··· + 3.05402u + 0.800318
a
4
=
0.259446u
80
+ 0.204971u
79
+ ··· 18.6233u 5.57768
0.157772u
80
+ 0.183340u
79
+ ··· 4.83114u 3.19296
a
9
=
0.111704u
80
+ 0.397558u
79
+ ··· 6.23678u 4.64153
0.0545258u
80
+ 0.0419649u
79
+ ··· 0.269902u 0.998356
a
8
=
0.184153u
80
+ 0.220811u
79
+ ··· 11.7267u 4.50953
0.273077u
80
+ 0.267431u
79
+ ··· 5.04554u 3.85646
a
12
=
0.493301u
80
0.569619u
79
+ ··· + 16.6789u + 6.41142
0.0147144u
80
+ 0.0729091u
79
+ ··· + 0.464872u 0.795811
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.191745u
80
0.688940u
79
+ ··· + 3.61897u 7.41512
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
81
+ 39u
80
+ ··· + 52u + 1
c
2
, c
4
u
81
7u
80
+ ··· + 2u + 1
c
3
, c
8
u
81
u
80
+ ··· + 64u + 64
c
5
, c
6
, c
10
u
81
2u
80
+ ··· 27u + 9
c
7
, c
11
, c
12
u
81
+ 2u
80
+ ··· + 3u + 1
c
9
u
81
+ 8u
80
+ ··· 3141u + 2537
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
81
+ 13y
80
+ ··· + 3164y 1
c
2
, c
4
y
81
39y
80
+ ··· + 52y 1
c
3
, c
8
y
81
+ 39y
80
+ ··· 40960y 4096
c
5
, c
6
, c
10
y
81
80y
80
+ ··· 693y 81
c
7
, c
11
, c
12
y
81
+ 64y
80
+ ··· + 11y 1
c
9
y
81
+ 4y
80
+ ··· + 43125951y 6436369
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.549854 + 0.817265I
a = 0.668883 + 0.232142I
b = 1.240880 + 0.079920I
2.18909 2.68944I 0
u = 0.549854 0.817265I
a = 0.668883 0.232142I
b = 1.240880 0.079920I
2.18909 + 2.68944I 0
u = 0.423119 + 0.878378I
a = 0.92747 + 1.27632I
b = 0.735616 0.474491I
3.90058 + 0.83925I 0
u = 0.423119 0.878378I
a = 0.92747 1.27632I
b = 0.735616 + 0.474491I
3.90058 0.83925I 0
u = 0.629386 + 0.882957I
a = 0.11503 1.99991I
b = 0.920437 + 0.512641I
3.30143 + 4.94717I 0
u = 0.629386 0.882957I
a = 0.11503 + 1.99991I
b = 0.920437 0.512641I
3.30143 4.94717I 0
u = 0.871043 + 0.244839I
a = 0.226267 0.008099I
b = 0.923001 0.532162I
1.18559 + 2.18588I 0
u = 0.871043 0.244839I
a = 0.226267 + 0.008099I
b = 0.923001 + 0.532162I
1.18559 2.18588I 0
u = 0.285149 + 1.085700I
a = 0.262963 + 1.112650I
b = 1.035310 0.663440I
7.49110 + 4.12587I 0
u = 0.285149 1.085700I
a = 0.262963 1.112650I
b = 1.035310 + 0.663440I
7.49110 4.12587I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.404547 + 1.051810I
a = 0.220162 1.151750I
b = 0.573320 + 0.814273I
8.88154 1.39549I 0
u = 0.404547 1.051810I
a = 0.220162 + 1.151750I
b = 0.573320 0.814273I
8.88154 + 1.39549I 0
u = 0.669709 + 0.987448I
a = 0.659904 + 0.714844I
b = 0.453835 0.861154I
8.12466 5.17001I 0
u = 0.669709 0.987448I
a = 0.659904 0.714844I
b = 0.453835 + 0.861154I
8.12466 + 5.17001I 0
u = 0.743128 + 0.238456I
a = 0.936570 0.552245I
b = 0.670993 + 0.510713I
2.69972 + 1.11767I 8.46846 0.34647I
u = 0.743128 0.238456I
a = 0.936570 + 0.552245I
b = 0.670993 0.510713I
2.69972 1.11767I 8.46846 + 0.34647I
u = 0.528811 + 0.566420I
a = 0.30265 + 2.22515I
b = 1.101470 0.618329I
0.93164 + 8.30570I 13.1243 9.3739I
u = 0.528811 0.566420I
a = 0.30265 2.22515I
b = 1.101470 + 0.618329I
0.93164 8.30570I 13.1243 + 9.3739I
u = 0.761650 + 0.974344I
a = 0.37235 1.64135I
b = 1.113920 + 0.647715I
6.14001 10.75700I 0
u = 0.761650 0.974344I
a = 0.37235 + 1.64135I
b = 1.113920 0.647715I
6.14001 + 10.75700I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.245470 + 0.133358I
a = 0.291110 0.847829I
b = 0.746809 + 0.711067I
0.83961 2.58594I 0
u = 1.245470 0.133358I
a = 0.291110 + 0.847829I
b = 0.746809 0.711067I
0.83961 + 2.58594I 0
u = 1.202630 + 0.422167I
a = 0.159393 0.613266I
b = 0.866243 + 0.666328I
2.92901 + 1.26794I 0
u = 1.202630 0.422167I
a = 0.159393 + 0.613266I
b = 0.866243 0.666328I
2.92901 1.26794I 0
u = 0.434384 + 0.537078I
a = 1.142120 0.805181I
b = 0.438054 + 0.799462I
2.90437 + 2.98477I 9.55591 5.23848I
u = 0.434384 0.537078I
a = 1.142120 + 0.805181I
b = 0.438054 0.799462I
2.90437 2.98477I 9.55591 + 5.23848I
u = 1.312810 + 0.029010I
a = 0.553493 0.125261I
b = 0.324181 + 0.863693I
0.185868 + 1.219880I 0
u = 1.312810 0.029010I
a = 0.553493 + 0.125261I
b = 0.324181 0.863693I
0.185868 1.219880I 0
u = 1.359630 + 0.023425I
a = 0.90230 1.79054I
b = 1.053060 + 0.510916I
4.34022 + 0.45005I 0
u = 1.359630 0.023425I
a = 0.90230 + 1.79054I
b = 1.053060 0.510916I
4.34022 0.45005I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.364690 + 0.077002I
a = 1.17174 + 1.47880I
b = 1.160950 0.604080I
2.30932 + 6.62917I 0
u = 1.364690 0.077002I
a = 1.17174 1.47880I
b = 1.160950 + 0.604080I
2.30932 6.62917I 0
u = 0.457361 + 0.415520I
a = 0.10898 + 2.86219I
b = 0.946808 0.440327I
1.58018 2.82736I 15.3914 + 7.4030I
u = 0.457361 0.415520I
a = 0.10898 2.86219I
b = 0.946808 + 0.440327I
1.58018 + 2.82736I 15.3914 7.4030I
u = 1.383020 + 0.067923I
a = 1.162760 + 0.218155I
b = 1.266990 + 0.222352I
5.03426 + 2.16541I 0
u = 1.383020 0.067923I
a = 1.162760 0.218155I
b = 1.266990 0.222352I
5.03426 2.16541I 0
u = 1.378230 + 0.145858I
a = 0.679555 + 0.442834I
b = 0.377108 0.555718I
2.43296 3.85164I 0
u = 1.378230 0.145858I
a = 0.679555 0.442834I
b = 0.377108 + 0.555718I
2.43296 + 3.85164I 0
u = 0.327143 + 0.472697I
a = 0.912647 + 0.072753I
b = 0.063180 + 0.313296I
2.85428 + 1.54452I 7.25846 4.25517I
u = 0.327143 0.472697I
a = 0.912647 0.072753I
b = 0.063180 0.313296I
2.85428 1.54452I 7.25846 + 4.25517I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44455 + 0.07637I
a = 0.681802 + 0.524693I
b = 0.430423 0.562966I
6.23300 + 0.57167I 0
u = 1.44455 0.07637I
a = 0.681802 0.524693I
b = 0.430423 + 0.562966I
6.23300 0.57167I 0
u = 1.38481 + 0.42788I
a = 0.190392 + 0.906474I
b = 0.729122 0.763915I
3.37635 + 6.67232I 0
u = 1.38481 0.42788I
a = 0.190392 0.906474I
b = 0.729122 + 0.763915I
3.37635 6.67232I 0
u = 0.166020 + 0.514578I
a = 0.44693 + 1.85551I
b = 0.518731 0.743814I
3.42589 + 0.03376I 7.43382 3.19727I
u = 0.166020 0.514578I
a = 0.44693 1.85551I
b = 0.518731 + 0.743814I
3.42589 0.03376I 7.43382 + 3.19727I
u = 0.442772 + 0.285049I
a = 0.529533 0.735122I
b = 1.155150 0.126670I
2.38286 + 0.75626I 14.3003 8.7966I
u = 0.442772 0.285049I
a = 0.529533 + 0.735122I
b = 1.155150 + 0.126670I
2.38286 0.75626I 14.3003 + 8.7966I
u = 0.050728 + 0.520709I
a = 1.27689 1.67775I
b = 1.053540 + 0.606874I
1.82638 5.10869I 10.33632 + 2.79274I
u = 0.050728 0.520709I
a = 1.27689 + 1.67775I
b = 1.053540 0.606874I
1.82638 + 5.10869I 10.33632 2.79274I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.48422 + 0.11960I
a = 1.091750 + 0.198604I
b = 1.280200 + 0.207550I
8.74917 2.34681I 0
u = 1.48422 0.11960I
a = 1.091750 0.198604I
b = 1.280200 0.207550I
8.74917 + 2.34681I 0
u = 1.48081 + 0.20261I
a = 0.517683 + 0.219188I
b = 0.336394 0.886288I
3.35067 5.75212I 0
u = 1.48081 0.20261I
a = 0.517683 0.219188I
b = 0.336394 + 0.886288I
3.35067 + 5.75212I 0
u = 1.48858 + 0.15570I
a = 0.76126 1.73875I
b = 1.043700 + 0.528714I
7.98070 + 4.98123I 0
u = 1.48858 0.15570I
a = 0.76126 + 1.73875I
b = 1.043700 0.528714I
7.98070 4.98123I 0
u = 1.47731 + 0.29233I
a = 0.676255 0.600632I
b = 0.476333 + 0.571535I
2.13437 4.97965I 0
u = 1.47731 0.29233I
a = 0.676255 + 0.600632I
b = 0.476333 0.571535I
2.13437 + 4.97965I 0
u = 1.53297 + 0.07025I
a = 0.938110 + 0.143254I
b = 0.984287 + 0.354066I
5.50382 5.89106I 0
u = 1.53297 0.07025I
a = 0.938110 0.143254I
b = 0.984287 0.354066I
5.50382 + 5.89106I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.52594 + 0.21463I
a = 1.05573 1.41124I
b = 1.166350 + 0.614109I
5.84280 11.26350I 0
u = 1.52594 0.21463I
a = 1.05573 + 1.41124I
b = 1.166350 0.614109I
5.84280 + 11.26350I 0
u = 0.438199 + 0.090942I
a = 0.71864 + 1.28993I
b = 1.023580 + 0.544299I
1.40601 5.44440I 11.95126 + 6.52227I
u = 0.438199 0.090942I
a = 0.71864 1.28993I
b = 1.023580 0.544299I
1.40601 + 5.44440I 11.95126 6.52227I
u = 1.53643 + 0.30203I
a = 1.038800 0.184797I
b = 1.290020 0.193740I
4.57501 + 6.82873I 0
u = 1.53643 0.30203I
a = 1.038800 + 0.184797I
b = 1.290020 + 0.193740I
4.57501 6.82873I 0
u = 1.58629 + 0.05555I
a = 0.930451 + 0.108721I
b = 0.969777 + 0.339351I
9.36860 1.19827I 0
u = 1.58629 0.05555I
a = 0.930451 0.108721I
b = 0.969777 0.339351I
9.36860 + 1.19827I 0
u = 1.56074 + 0.32973I
a = 0.65568 + 1.70420I
b = 1.033980 0.542121I
3.74298 9.47180I 0
u = 1.56074 0.32973I
a = 0.65568 1.70420I
b = 1.033980 + 0.542121I
3.74298 + 9.47180I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59535 + 0.18384I
a = 0.922475 0.080974I
b = 0.953038 0.328264I
5.30238 3.47210I 0
u = 1.59535 0.18384I
a = 0.922475 + 0.080974I
b = 0.953038 + 0.328264I
5.30238 + 3.47210I 0
u = 1.57920 + 0.37233I
a = 0.496415 0.282202I
b = 0.348581 + 0.901087I
0.96810 + 10.23090I 0
u = 1.57920 0.37233I
a = 0.496415 + 0.282202I
b = 0.348581 0.901087I
0.96810 10.23090I 0
u = 0.164890 + 0.328364I
a = 2.32898 1.39189I
b = 0.829025 + 0.304193I
0.893071 + 0.448349I 12.04732 + 1.92652I
u = 0.164890 0.328364I
a = 2.32898 + 1.39189I
b = 0.829025 0.304193I
0.893071 0.448349I 12.04732 1.92652I
u = 0.361635
a = 1.02021
b = 0.134399
0.560922 17.5600
u = 1.62225 + 0.36056I
a = 0.97081 + 1.37626I
b = 1.168610 0.622869I
1.5044 + 15.8184I 0
u = 1.62225 0.36056I
a = 0.97081 1.37626I
b = 1.168610 + 0.622869I
1.5044 15.8184I 0
u = 0.103264 + 0.221522I
a = 4.46938 1.58365I
b = 1.076350 0.292667I
0.176220 1.062730I 15.2379 + 0.1443I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.103264 0.221522I
a = 4.46938 + 1.58365I
b = 1.076350 + 0.292667I
0.176220 + 1.062730I 15.2379 0.1443I
13
II. I
u
2
= hb + 1, a + 1, u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
1
1
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
2
=
2
1
a
1
=
1
0
a
4
=
1
1
a
9
=
u
u
a
8
=
u
u
a
12
=
u
5
2u
3
u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
4u 15
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
8
u
6
c
4
(u + 1)
6
c
5
, c
6
, c
9
u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1
c
7
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1
c
10
u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1
c
11
, c
12
u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
8
y
6
c
5
, c
6
, c
9
c
10
y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1
c
7
, c
11
, c
12
y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.493180 + 0.575288I
a = 1.00000
b = 1.00000
1.31531 + 1.97241I 12.92955 2.53106I
u = 0.493180 0.575288I
a = 1.00000
b = 1.00000
1.31531 1.97241I 12.92955 + 2.53106I
u = 0.483672
a = 1.00000
b = 1.00000
2.38379 16.9080
u = 1.52087 + 0.16310I
a = 1.00000
b = 1.00000
5.34051 4.59213I 13.8770 + 3.6103I
u = 1.52087 0.16310I
a = 1.00000
b = 1.00000
5.34051 + 4.59213I 13.8770 3.6103I
u = 1.53904
a = 1.00000
b = 1.00000
9.30502 17.4790
17
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
81
+ 39u
80
+ ··· + 52u + 1)
c
2
((u 1)
6
)(u
81
7u
80
+ ··· + 2u + 1)
c
3
, c
8
u
6
(u
81
u
80
+ ··· + 64u + 64)
c
4
((u + 1)
6
)(u
81
7u
80
+ ··· + 2u + 1)
c
5
, c
6
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
81
2u
80
+ ··· 27u + 9)
c
7
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
81
+ 2u
80
+ ··· + 3u + 1)
c
9
(u
6
u
5
3u
4
+ 2u
3
+ 2u
2
+ u 1)(u
81
+ 8u
80
+ ··· 3141u + 2537)
c
10
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)(u
81
2u
80
+ ··· 27u + 9)
c
11
, c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)(u
81
+ 2u
80
+ ··· + 3u + 1)
18
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
81
+ 13y
80
+ ··· + 3164y 1)
c
2
, c
4
((y 1)
6
)(y
81
39y
80
+ ··· + 52y 1)
c
3
, c
8
y
6
(y
81
+ 39y
80
+ ··· 40960y 4096)
c
5
, c
6
, c
10
(y
6
7y
5
+ ··· 5y + 1)(y
81
80y
80
+ ··· 693y 81)
c
7
, c
11
, c
12
(y
6
+ 5y
5
+ ··· 5y + 1)(y
81
+ 64y
80
+ ··· + 11y 1)
c
9
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
· (y
81
+ 4y
80
+ ··· + 43125951y 6436369)
19