12a
0158
(K12a
0158
)
A knot diagram
1
Linearized knot diagam
3 5 9 2 11 12 10 4 8 1 6 7
Solving Sequence
4,8
9
1,10
11 3 2 5 7 12 6
c
8
c
9
c
10
c
3
c
1
c
4
c
7
c
12
c
6
c
2
, c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.37013 × 10
32
u
60
+ 1.07931 × 10
33
u
59
+ ··· + 2.13053 × 10
33
b + 2.55159 × 10
32
,
1.77317 × 10
32
u
60
+ 4.83859 × 10
32
u
59
+ ··· + 1.06527 × 10
33
a + 3.22263 × 10
33
, u
61
u
60
+ ··· + 8u + 4i
I
v
1
= ha, b + v + 1, v
2
+ v 1i
* 2 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4.37×10
32
u
60
+1.08×10
33
u
59
+· · ·+2.13×10
33
b+2.55×10
32
, 1.77×
10
32
u
60
+4.84×10
32
u
59
+· · ·+1.07×10
33
a+3.22×10
33
, u
61
u
60
+· · ·+8u+4i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
1
=
0.166453u
60
0.454214u
59
+ ··· 5.04302u 3.02519
0.205119u
60
0.506592u
59
+ ··· + 1.80715u 0.119763
a
10
=
u
2
+ 1
u
2
a
11
=
0.0499331u
60
0.0191878u
59
+ ··· + 4.34689u + 1.61382
0.531140u
60
0.796906u
59
+ ··· + 4.86494u + 0.379014
a
3
=
u
u
3
+ u
a
2
=
0.308153u
60
0.583793u
59
+ ··· 4.74082u 3.17923
0.351153u
60
0.680255u
59
+ ··· + 1.44558u 0.322290
a
5
=
0.152571u
60
0.191082u
59
+ ··· + 5.21389u + 1.75438
0.319024u
60
0.645296u
59
+ ··· + 0.170875u 1.27081
a
7
=
u
4
+ u
2
+ 1
u
4
a
12
=
0.394171u
60
0.666399u
59
+ ··· 4.85797u 3.23772
0.323761u
60
0.610161u
59
+ ··· 0.328448u 1.25482
a
6
=
0.711527u
60
+ 0.890795u
59
+ ··· 2.81563u 0.209751
0.127525u
60
+ 0.512045u
59
+ ··· 3.76247u 1.00960
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.26579u
60
+ 1.94808u
59
+ ··· + 11.8662u 2.65853
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
61
+ 35u
60
+ ··· + 40u + 1
c
2
, c
4
u
61
3u
60
+ ··· + 2u + 1
c
3
, c
8
u
61
u
60
+ ··· + 8u + 4
c
5
, c
6
, c
11
c
12
u
61
+ 2u
60
+ ··· + u + 1
c
7
, c
9
u
61
15u
60
+ ··· 88u + 16
c
10
u
61
20u
60
+ ··· 33811u + 6497
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
61
15y
60
+ ··· + 992y 1
c
2
, c
4
y
61
35y
60
+ ··· + 40y 1
c
3
, c
8
y
61
+ 15y
60
+ ··· 88y 16
c
5
, c
6
, c
11
c
12
y
61
72y
60
+ ··· + 13y 1
c
7
, c
9
y
61
+ 59y
60
+ ··· + 9760y 256
c
10
y
61
36y
60
+ ··· 229814295y 42211009
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.238487 + 0.953197I
a = 0.003755 + 0.877090I
b = 0.178706 + 0.107732I
2.09116 + 2.27253I 4.25062 5.15678I
u = 0.238487 0.953197I
a = 0.003755 0.877090I
b = 0.178706 0.107732I
2.09116 2.27253I 4.25062 + 5.15678I
u = 0.307970 + 0.970251I
a = 0.0336117 0.1292320I
b = 0.942071 + 0.219289I
1.65969 + 3.31321I 4.58003 3.95738I
u = 0.307970 0.970251I
a = 0.0336117 + 0.1292320I
b = 0.942071 0.219289I
1.65969 3.31321I 4.58003 + 3.95738I
u = 0.877601 + 0.378203I
a = 0.207288 0.357685I
b = 0.447467 + 0.371493I
9.07110 3.90521I 14.6512 + 4.5873I
u = 0.877601 0.378203I
a = 0.207288 + 0.357685I
b = 0.447467 0.371493I
9.07110 + 3.90521I 14.6512 4.5873I
u = 0.084785 + 0.946752I
a = 0.080363 + 0.669261I
b = 0.531909 + 0.161258I
2.57667 + 0.91135I 2.15381 4.08068I
u = 0.084785 0.946752I
a = 0.080363 0.669261I
b = 0.531909 0.161258I
2.57667 0.91135I 2.15381 + 4.08068I
u = 0.077209 + 1.056450I
a = 0.297681 + 0.382384I
b = 0.928442 + 0.127233I
3.28717 2.31394I 7.12059 + 3.62918I
u = 0.077209 1.056450I
a = 0.297681 0.382384I
b = 0.928442 0.127233I
3.28717 + 2.31394I 7.12059 3.62918I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.359746 + 1.016880I
a = 0.062599 + 1.101460I
b = 0.217088 + 0.019866I
4.85916 4.06193I 8.00000 + 3.62400I
u = 0.359746 1.016880I
a = 0.062599 1.101460I
b = 0.217088 0.019866I
4.85916 + 4.06193I 8.00000 3.62400I
u = 0.410008 + 1.014890I
a = 0.012002 0.459759I
b = 0.721661 + 0.144626I
0.62509 6.72372I 8.00000 + 10.31873I
u = 0.410008 1.014890I
a = 0.012002 + 0.459759I
b = 0.721661 0.144626I
0.62509 + 6.72372I 8.00000 10.31873I
u = 0.808032 + 0.816831I
a = 1.00805 + 1.02708I
b = 0.03711 + 1.94913I
4.47605 + 0.47564I 0
u = 0.808032 0.816831I
a = 1.00805 1.02708I
b = 0.03711 1.94913I
4.47605 0.47564I 0
u = 0.749510 + 0.886201I
a = 0.87056 + 1.16887I
b = 0.43430 + 1.70385I
1.90394 + 2.84541I 0
u = 0.749510 0.886201I
a = 0.87056 1.16887I
b = 0.43430 1.70385I
1.90394 2.84541I 0
u = 0.316577 + 0.775281I
a = 0.34310 2.42404I
b = 0.749506 + 0.387164I
9.89951 + 1.70824I 13.49720 3.89995I
u = 0.316577 0.775281I
a = 0.34310 + 2.42404I
b = 0.749506 0.387164I
9.89951 1.70824I 13.49720 + 3.89995I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.489410 + 1.059940I
a = 0.038865 0.755001I
b = 0.369249 + 0.129881I
6.69274 + 8.82294I 0
u = 0.489410 1.059940I
a = 0.038865 + 0.755001I
b = 0.369249 0.129881I
6.69274 8.82294I 0
u = 0.849526 + 0.813861I
a = 1.44747 1.16596I
b = 0.11881 1.83683I
5.74001 + 1.43814I 0
u = 0.849526 0.813861I
a = 1.44747 + 1.16596I
b = 0.11881 + 1.83683I
5.74001 1.43814I 0
u = 0.757519 + 0.305031I
a = 0.149859 0.548164I
b = 0.040871 + 0.285650I
1.78875 + 2.52359I 12.4907 7.4949I
u = 0.757519 0.305031I
a = 0.149859 + 0.548164I
b = 0.040871 0.285650I
1.78875 2.52359I 12.4907 + 7.4949I
u = 0.874218 + 0.804569I
a = 1.15410 + 0.99565I
b = 0.28100 + 2.30195I
12.87930 2.42278I 0
u = 0.874218 0.804569I
a = 1.15410 0.99565I
b = 0.28100 2.30195I
12.87930 + 2.42278I 0
u = 0.821847 + 0.871851I
a = 1.56651 1.37568I
b = 0.35452 2.07289I
8.17948 + 2.03351I 0
u = 0.821847 0.871851I
a = 1.56651 + 1.37568I
b = 0.35452 + 2.07289I
8.17948 2.03351I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.241710 + 0.747099I
a = 0.465874 + 0.305697I
b = 1.270210 + 0.529709I
1.94835 1.41549I 11.33185 + 4.43113I
u = 0.241710 0.747099I
a = 0.465874 0.305697I
b = 1.270210 0.529709I
1.94835 + 1.41549I 11.33185 4.43113I
u = 0.772724 + 0.137846I
a = 0.672930 + 0.110054I
b = 0.895434 0.127416I
7.72551 + 0.23364I 12.50787 + 1.31729I
u = 0.772724 0.137846I
a = 0.672930 0.110054I
b = 0.895434 + 0.127416I
7.72551 0.23364I 12.50787 1.31729I
u = 0.909481 + 0.809234I
a = 1.55609 0.96630I
b = 0.57813 2.04844I
8.07107 4.97454I 0
u = 0.909481 0.809234I
a = 1.55609 + 0.96630I
b = 0.57813 + 2.04844I
8.07107 + 4.97454I 0
u = 0.836848 + 0.884467I
a = 1.10413 1.59303I
b = 0.05000 2.92120I
16.6735 2.0703I 0
u = 0.836848 0.884467I
a = 1.10413 + 1.59303I
b = 0.05000 + 2.92120I
16.6735 + 2.0703I 0
u = 0.805476 + 0.918966I
a = 0.92783 1.56312I
b = 0.19783 2.45697I
8.03154 + 4.05119I 0
u = 0.805476 0.918966I
a = 0.92783 + 1.56312I
b = 0.19783 + 2.45697I
8.03154 4.05119I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.776141 + 0.950673I
a = 0.90967 + 1.32399I
b = 0.83918 + 1.88849I
4.06730 6.42529I 0
u = 0.776141 0.950673I
a = 0.90967 1.32399I
b = 0.83918 1.88849I
4.06730 + 6.42529I 0
u = 0.824923 + 0.918769I
a = 1.71708 1.47330I
b = 0.63383 2.39142I
16.5663 4.1225I 0
u = 0.824923 0.918769I
a = 1.71708 + 1.47330I
b = 0.63383 + 2.39142I
16.5663 + 4.1225I 0
u = 0.797214 + 0.969907I
a = 0.74216 1.63736I
b = 0.66652 2.12988I
5.25621 7.57674I 0
u = 0.797214 0.969907I
a = 0.74216 + 1.63736I
b = 0.66652 + 2.12988I
5.25621 + 7.57674I 0
u = 0.949600 + 0.823547I
a = 1.68518 0.86336I
b = 0.86700 2.32515I
16.4115 + 7.1396I 0
u = 0.949600 0.823547I
a = 1.68518 + 0.86336I
b = 0.86700 + 2.32515I
16.4115 7.1396I 0
u = 0.806362 + 0.985930I
a = 0.96958 + 1.42164I
b = 1.10553 + 2.10803I
12.3142 + 8.6618I 0
u = 0.806362 0.985930I
a = 0.96958 1.42164I
b = 1.10553 2.10803I
12.3142 8.6618I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.823074 + 1.001050I
a = 0.68683 1.78798I
b = 1.13111 2.20407I
7.46084 + 11.37220I 0
u = 0.823074 1.001050I
a = 0.68683 + 1.78798I
b = 1.13111 + 2.20407I
7.46084 11.37220I 0
u = 0.848261 + 1.018330I
a = 0.67747 1.91157I
b = 1.48348 2.35344I
15.7786 13.7453I 0
u = 0.848261 1.018330I
a = 0.67747 + 1.91157I
b = 1.48348 + 2.35344I
15.7786 + 13.7453I 0
u = 0.308299 + 0.596152I
a = 0.945489 + 0.457470I
b = 2.00842 + 0.79172I
10.52170 + 0.86189I 12.7781 7.9081I
u = 0.308299 0.596152I
a = 0.945489 0.457470I
b = 2.00842 0.79172I
10.52170 0.86189I 12.7781 + 7.9081I
u = 0.254491 + 0.574517I
a = 0.11821 2.36867I
b = 0.311978 + 0.275962I
2.54655 0.75490I 10.56290 + 9.15741I
u = 0.254491 0.574517I
a = 0.11821 + 2.36867I
b = 0.311978 0.275962I
2.54655 + 0.75490I 10.56290 9.15741I
u = 0.612829 + 0.106029I
a = 0.809358 0.377022I
b = 0.294046 + 0.149479I
1.002850 0.150257I 9.43253 1.75186I
u = 0.612829 0.106029I
a = 0.809358 + 0.377022I
b = 0.294046 0.149479I
1.002850 + 0.150257I 9.43253 + 1.75186I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.415187
a = 0.415618
b = 0.410931
0.737929 13.3140
11
II. I
v
1
= ha, b + v + 1, v
2
+ v 1i
(i) Arc colorings
a
4
=
v
0
a
8
=
1
0
a
9
=
1
0
a
1
=
0
v 1
a
10
=
1
0
a
11
=
1
v + 2
a
3
=
v
0
a
2
=
v
v 1
a
5
=
0
v + 1
a
7
=
1
0
a
12
=
v 1
v 1
a
6
=
v 1
v 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 15
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
7
, c
8
c
9
u
2
c
4
(u + 1)
2
c
5
, c
6
, c
10
u
2
+ u 1
c
11
, c
12
u
2
u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
7
, c
8
c
9
y
2
c
5
, c
6
, c
10
c
11
, c
12
y
2
3y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.618034
a = 0
b = 1.61803
10.5276 15.0000
v = 1.61803
a = 0
b = 0.618034
2.63189 15.0000
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
2
)(u
61
+ 35u
60
+ ··· + 40u + 1)
c
2
((u 1)
2
)(u
61
3u
60
+ ··· + 2u + 1)
c
3
, c
8
u
2
(u
61
u
60
+ ··· + 8u + 4)
c
4
((u + 1)
2
)(u
61
3u
60
+ ··· + 2u + 1)
c
5
, c
6
(u
2
+ u 1)(u
61
+ 2u
60
+ ··· + u + 1)
c
7
, c
9
u
2
(u
61
15u
60
+ ··· 88u + 16)
c
10
(u
2
+ u 1)(u
61
20u
60
+ ··· 33811u + 6497)
c
11
, c
12
(u
2
u 1)(u
61
+ 2u
60
+ ··· + u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
61
15y
60
+ ··· + 992y 1)
c
2
, c
4
((y 1)
2
)(y
61
35y
60
+ ··· + 40y 1)
c
3
, c
8
y
2
(y
61
+ 15y
60
+ ··· 88y 16)
c
5
, c
6
, c
11
c
12
(y
2
3y + 1)(y
61
72y
60
+ ··· + 13y 1)
c
7
, c
9
y
2
(y
61
+ 59y
60
+ ··· + 9760y 256)
c
10
(y
2
3y + 1)(y
61
36y
60
+ ··· 2.29814 × 10
8
y 4.22110 × 10
7
)
17